邊緣檢測方法研究及應(yīng)用
[Abstract]:With the development of mechatronics, the requirement of mass production of parts is increasing. High speed and high precision continuously permeate into every production link of machining. However, in the process of processing, the pin produced often has surface scratches and rusts due to the influence of the outside world and the characteristics of the material itself. Such defects as dimension exceeding tolerance range will affect the normal use of pins. For smaller pins, manual sorting of qualified parts can no longer meet the requirements of industrial production for product quality and production speed. Therefore, it is very important to study the non-contact detection and screening of pins based on image processing. Through the study of many edge algorithms, the theoretical interpolation edge detection algorithm in the selection of pin edge accurate location algorithm, in the actual image detection process, there are shortcomings of inaccurate location. Aiming at the disadvantage that the Gussia pixel algorithm can not be applied to the actual detection, the edge detection step is added to the selection process of pin, and the original interpolation algorithm is optimized. This paper is based on MATLAB programming platform, the algorithm is implemented. In the process of pin surface quality and edge location, the similarity function of SSIM structure and Gauss pixel interpolation algorithm are optimized, and the algorithm is implemented by corresponding program. The processing process is as follows: firstly, the image edge contour is obtained by Canny algorithm, and the similarity between the contour and the standard pin contour is judged, and the preliminary screening is completed. Then, the angle of the edge is rotated in the process of pin size measurement, the transformed image is calculated by Gao Si interpolation, and the size of pin is screened accurately. The combination of these two edge detection algorithms is directionally invariant in the process of edge detection and can screen pins efficiently. The experimental results show that the algorithm can meet the precision requirement when it is applied to pin edge detection.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許光明;吳昭;周春蘭;沈軍民;;基于視覺的零件尺寸測量[J];工業(yè)控制計算機(jī);2015年04期
2 劉明周;馬靖;張淼;趙志彪;楊鐸;王強(qiáng);;基于機(jī)器視覺的機(jī)械產(chǎn)品裝配系統(tǒng)在線作業(yè)方法[J];計算機(jī)集成制造系統(tǒng);2015年09期
3 呂繼武;于偉;鄭偉;;一種基于改進(jìn)的HOUGH變換的車輪檢測方法[J];電子技術(shù)與軟件工程;2014年13期
4 崔然;;淺析計算機(jī)視覺技術(shù)在農(nóng)產(chǎn)品檢測及分級中的應(yīng)用[J];電子測試;2013年09期
5 祁曉玲;趙霞霞;靳伍銀;;基于機(jī)器視覺的軸類零件幾何尺寸測量[J];組合機(jī)床與自動化加工技術(shù);2013年01期
6 來躍深;陳琛;田軍委;程鋼;;高斯插值亞像素邊緣檢測算法的優(yōu)化[J];西安工業(yè)大學(xué)學(xué)報;2012年10期
7 林雯;;基于計算機(jī)視覺和神經(jīng)網(wǎng)絡(luò)的芒果外觀等級分類研究[J];安徽農(nóng)業(yè)科學(xué);2010年23期
8 高晶晶;李景茹;劉瑞敏;;計算機(jī)視覺技術(shù)在花生破損檢測中的應(yīng)用[J];機(jī)電產(chǎn)品開發(fā)與創(chuàng)新;2010年03期
9 費(fèi)麗君;譚峰;;機(jī)器視覺技術(shù)在大豆葉片葉綠素含量測算上的應(yīng)用[J];農(nóng)機(jī)化研究;2010年03期
10 凌遠(yuǎn)煥;徐杜;蔣永平;劉長紅;黃杰賢;;基于局部區(qū)域灰度矩圖像邊緣定位方法的研究[J];光學(xué)與光電技術(shù);2009年03期
,本文編號:2406773
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2406773.html