水環(huán)境本體構(gòu)建和組織方法研究及應(yīng)用
[Abstract]:With the development of water conservancy information, due to the lack of standardized information expression, many information can not be shared and integrated, which restricts the progress of water science and technology. As a kind of standardized expression, ontology can be applied well. In order to realize information sharing in the framework of digital watershed, it is necessary to construct the domain ontology of water environment by taking the domain knowledge of watershed water environment as the research object. In this paper, a method of constructing and organizing water environment ontology is proposed. The water environment domain ontology contains a series of concepts of water environment domain, and also includes a description of the classification of these concepts. In this paper, the concept of domain is extracted by using seed concept and TFIDF mixed method. Considering the uneven distribution of words in text set, the original TFIDF formula is improved and the precision of ontology concept extraction is improved. By introducing the concept of seed, the defects of low frequency word extraction in TFIDF method are solved. The selected seed concept is derived from the related concepts in the semantic web of the earth and environment, (SWEET) and CUAHSI ontology. These ontologies all provide the top ontology of the subject concept of water environment system. Then the domain concept set is obtained by calculating the domain correlation degree (DR) and domain consistency degree (DC) of candidate concepts. Secondly, genetic algorithm is added to the traditional K-means clustering algorithm to optimize the parameters, so as to extract the classification relationship of the concept in the field of water environment. The optimization method effectively eliminates the randomness of the K-means algorithm to determine the classification number K manually and the limitation that the hierarchical structure of ontology can not be generated automatically and improves the accuracy of clustering analysis. Thirdly, this paper proposes a multi-policy ontology mapping, which obtains the similarity between ontology concepts from name, structure, attribute and instance strategy, and obtains the comprehensive similarity by introducing Sigmoid function to determine the weights of each strategy. It improves the precision and efficiency of ontology mapping and completes the organization of water environment ontology. Finally, the water environment ontology construction and organization system is designed and developed. According to the method and process of ontology construction, the system is divided into five modules: pretreatment module, domain concept extraction module, concept relation extraction module. Ontology mapping and integration module, ontology visualization module, the text data source ontology construction and visualization display. The validity of ontology construction method is verified by experiments, which provides technical support for ontology construction and application.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖雨;崔榮一;懷麗波;;一種融合位置信息的字符串相似度度量方法[J];計算機(jī)應(yīng)用研究;2015年11期
2 馮波;郝文寧;陳剛;占棟輝;;K-means算法初始聚類中心選擇的優(yōu)化[J];計算機(jī)工程與應(yīng)用;2013年14期
3 陳英;何中市;黃敏;;一種優(yōu)化的K-means聚類中心算法研究[J];制造業(yè)自動化;2012年08期
4 譚富強(qiáng);;本體知識庫集成的方法研究[J];科學(xué)技術(shù)與工程;2012年06期
5 尚新麗;;國外本體構(gòu)建方法比較分析[J];圖書情報工作;2012年04期
6 王穎;劉建平;;基于改進(jìn)遺傳算法的K-means聚類分析[J];工業(yè)控制計算機(jī);2011年08期
7 王紅濱;劉大昕;王念濱;;基于遺傳算法和種子概念的本體概念提取算法[J];系統(tǒng)工程與電子技術(shù);2010年11期
8 程波波;張友華;李紹穩(wěn);辜麗川;朱利君;;茶學(xué)本體學(xué)習(xí)中的概念抽取[J];計算機(jī)系統(tǒng)應(yīng)用;2010年07期
9 董少春;尹宏偉;許剛;;地質(zhì)時間本體在異構(gòu)數(shù)據(jù)檢索中的應(yīng)用[J];地球信息科學(xué)學(xué)報;2010年02期
10 于娟;黨延忠;;結(jié)合詞性分析與串頻統(tǒng)計的詞語提取方法[J];系統(tǒng)工程理論與實踐;2010年01期
相關(guān)博士學(xué)位論文 前3條
1 李榮;異構(gòu)本體映射中的關(guān)鍵方法研究[D];吉林大學(xué);2014年
2 葉范波;基于本體的制造企業(yè)業(yè)務(wù)過程知識集成研究[D];浙江大學(xué);2008年
3 傅魁;基于Web的本體學(xué)習(xí)研究[D];武漢理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前8條
1 王星尹;本體概念匹配技術(shù)的研究與實現(xiàn)[D];西安電子科技大學(xué);2013年
2 廖福燕;本體構(gòu)建中概念和關(guān)系獲取方法研究[D];西安建筑科技大學(xué);2011年
3 吳香庭;基于遺傳算法的K-means聚類方法的研究[D];山東科技大學(xué);2010年
4 官瑩瑩;面向中文文本的本體學(xué)習(xí)方法研究[D];吉林大學(xué);2009年
5 任柏青;基于關(guān)系數(shù)據(jù)庫的領(lǐng)域本體構(gòu)建方法的研究與實踐[D];北京郵電大學(xué);2009年
6 單文娟;基因芯片數(shù)據(jù)分析方法比較[D];南京林業(yè)大學(xué);2008年
7 張逸清;基于遺傳算法的K-MEANS聚類改進(jìn)研究[D];重慶大學(xué);2006年
8 李勇;關(guān)于本體整合的研究及其在供應(yīng)鏈管理中的應(yīng)用[D];天津大學(xué);2005年
,本文編號:2396454
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2396454.html