天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于逐像素點(diǎn)深度卷積網(wǎng)絡(luò)分割模型的上皮和間質(zhì)組織分割

發(fā)布時(shí)間:2018-10-12 13:35
【摘要】:上皮和間質(zhì)組織是乳腺組織病理圖像中最基本的兩種組織,約80%的乳腺腫瘤起源于乳腺上皮組織.為了構(gòu)建基于乳腺組織病理圖像分析的計(jì)算機(jī)輔助診斷系統(tǒng)和分析腫瘤微環(huán)境,上皮和間質(zhì)組織的自動(dòng)分割是重要的前提條件.本文構(gòu)建一種基于逐像素點(diǎn)深度卷積網(wǎng)絡(luò)(CN-PI)模型的上皮和間質(zhì)組織的自動(dòng)分割方法.1)以病理醫(yī)生標(biāo)注的兩類區(qū)域邊界附近具有類信息為標(biāo)簽的像素點(diǎn)為中心,構(gòu)建包含該像素點(diǎn)上下文信息的正方形圖像塊的訓(xùn)練集.2)以每個(gè)正方形圖像塊包含的像素的彩色灰度值作為特征,以這些圖像塊中心像素類信息為標(biāo)簽訓(xùn)練CN模型.在測(cè)試階段,在待分割的組織病理圖像上逐像素點(diǎn)地取包含每個(gè)中心像素點(diǎn)上下文信息的正方形圖像塊,并輸入到預(yù)先訓(xùn)練好的CN網(wǎng)絡(luò)模型,以預(yù)測(cè)該圖像塊中心像素點(diǎn)的類信息.3)以每個(gè)圖像塊中心像素為基礎(chǔ),逐像素地遍歷圖像中的每一個(gè)像素,將預(yù)測(cè)結(jié)果作為該圖像塊中心像素點(diǎn)類信息的預(yù)測(cè)標(biāo)簽,實(shí)現(xiàn)對(duì)整幅圖像的逐像素分割.實(shí)驗(yàn)表明,本文提出的CN-PI模型的性能比基于圖像塊分割的CN網(wǎng)絡(luò)(CN-PA)模型表現(xiàn)出了更優(yōu)越的性能.
[Abstract]:Epithelium and mesenchymal tissue are the two most basic tissues in breast histopathological images. About 80% of breast tumors originate from mammary epithelial tissue. In order to construct a computer-aided diagnosis system based on breast pathological image analysis and analyze tumor microenvironment, automatic segmentation of epithelial and interstitial tissues is an important prerequisite. In this paper, an automatic segmentation method of epithelial and interstitial tissue based on pixel by pixel depth convolution network (CN-PI) model is proposed. A training set of square image blocks containing the context information of the pixel is constructed. 2) the color gray value of the pixels contained in each square image block is used as the feature, and the central pixel class information of these blocks is used as the label to train the CN model. In the test phase, the square image blocks containing the context information of each central pixel point are selected from the histopathological image to be segmented, and input to the pre-trained CN network model. Based on the class information of predicting the central pixel of the image block. 3) based on the central pixel of each image block, every pixel in the image is traversed pixel by pixel, and the prediction result is used as the prediction label of the pixel class information in the center of the image block. The pixel-by-pixel segmentation of the whole image is realized. Experimental results show that the performance of the proposed CN-PI model is better than that of the CN neural network (CN-PA) model based on image block segmentation.
【作者單位】: 南京信息工程大學(xué)江蘇省大數(shù)據(jù)分析技術(shù)重點(diǎn)實(shí)驗(yàn)室;武漢大學(xué)中南醫(yī)院腫瘤科腫瘤生物學(xué)行為湖北省重點(diǎn)實(shí)驗(yàn)室 湖北省腫瘤醫(yī)學(xué)臨床研究中心;
【基金】:國(guó)家自然科學(xué)基金(61771249,61273259) 江蘇省“六大人才高峰”高層次人才項(xiàng)目資助計(jì)劃(2013-XXRJ-019) 江蘇省自然科學(xué)基金(BK20141482) 江蘇創(chuàng)新創(chuàng)業(yè)團(tuán)隊(duì)人才計(jì)劃(JS201526)資助~~
【分類號(hào)】:R737.9;TP391.41
,

本文編號(hào):2266316

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2266316.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7642b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产高清在线不卡一区| 日韩一区二区三区在线日| 亚洲国产性感美女视频| 激情亚洲内射一区二区三区 | 中文字幕人妻日本一区二区| 免费观看在线午夜视频| 黑鬼糟蹋少妇资源在线观看| 91精品欧美综合在ⅹ| 在线观看视频日韩精品| 国产精品香蕉免费手机视频| 在线免费看国产精品黄片| 亚洲高清亚洲欧美一区二区| 欧美午夜性刺激在线观看| 国产中文字幕久久黄色片| 少妇福利视频一区二区| 中文字幕亚洲精品人妻| 亚洲欧洲在线一区二区三区| 女同伦理国产精品久久久| 日本99精品在线观看| 国产福利一区二区久久| 国产一区欧美一区日韩一区| 日本女优一区二区三区免费| 国产不卡的视频在线观看| 冬爱琴音一区二区中文字幕| 久久精品国产亚洲熟女| 亚洲一区二区亚洲日本| 日韩精品一区二区亚洲| 人妻久久一区二区三区精品99| 精品国产91亚洲一区二区三区| 欧美日韩亚洲国产精品| 日韩黄色大片免费在线| 午夜精品成年人免费视频| 日韩三极片在线免费播放| 亚洲专区中文字幕视频| 99热九九在线中文字幕| 麻豆国产精品一区二区三区| 污污黄黄的成年亚洲毛片| 激情综合五月开心久久| 欧美国产日本高清在线| 又黄又爽禁片视频在线观看| 日韩偷拍精品一区二区三区|