融合信任用戶間接影響的個性化推薦算法
[Abstract]:In order to solve the problem of data sparsity and cold startup inherent in recommendation systems, some additional information related to users or projects is usually used. A novel recommendation algorithm based on matrix factorization is proposed, which combines the indirect influence of other users on the future score of active users, and further integrates the trust relationship in social networks into the algorithm. At the same time, in order to avoid overfitting of learning parameters, a weighted regularization factor is introduced. Finally, experiments are carried out on Epinions data sets and Ciao data sets for general and cold start cases. The experimental results show that the proposed algorithm can improve the accuracy of recommendation and solve the related problems better than other algorithms.
【作者單位】: 江南大學物聯(lián)網(wǎng)工程學院物聯(lián)網(wǎng)技術應用教育部工程研究中心;
【基金】:國家自然科學基金(61673193) 中央高;究蒲袠I(yè)務費專項資金(JUSRP51510,JUSRP51635B)
【分類號】:TP391.3
【相似文獻】
相關期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計算機系統(tǒng)應用;2006年10期
2 余小鵬;;一種基于多層關聯(lián)規(guī)則的推薦算法研究[J];計算機應用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進[J];計算機應用與軟件;2008年09期
4 張立燕;;一種基于用戶事務模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強;;智能博物館環(huán)境下的個性化推薦算法[J];計算機工程與應用;2010年19期
7 王文;;個性化推薦算法研究[J];電腦知識與技術;2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進評價估計的混合推薦算法研究[J];微計算機信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計算機工程與應用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學學報(自然科學版);2011年03期
相關會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學術會議論文集(技術報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機應用技術交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學術會議論文集(技術報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務個性化推薦系統(tǒng)[A];社會經(jīng)濟發(fā)展轉型與系統(tǒng)工程——中國系統(tǒng)工程學會第17屆學術年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡的含時推薦算法[A];第五屆全國復雜網(wǎng)絡學術會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:2247184
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2247184.html