基于光照不變性的車道線檢測(cè)與跟蹤算法研究
[Abstract]:Due to the rapid development of domestic traffic, the negative impact is the sharp increase of traffic accidents, many of which are caused by lane deviation, so the real-time performance is high. High reliability lane detection and tracking has become the main content of vehicle navigation performance requirements. In recent years, due to the efforts of many researchers, some progress has been made in this field, for example, the road recognition used in freeway scene is very mature. In this paper, the detection and tracking of lane lines are studied, in which lane detection is widely used in automatic driving and collision alarm systems. Lane detection system in the road image, through the pre-processing algorithm to eliminate interference, and preliminary collation of the image, extract effective lane information, and identify it. This paper mainly includes four parts: pretreatment, lane detection algorithm, lane tracking algorithm and improved CSK algorithm. (1) Lane line detection algorithm. Through pre-processing algorithm, inverse perspective transformation, Gao Si filter and quantile method, the lane detection of images with different illumination brightness is prepared. Then the grayscale image with different illumination brightness is processed, the lane line recognition mainly uses the improved linear fitting consistency of the fast random sampling. (2) the lane line tracking algorithm. In this paper, the Kalman filter algorithm and CSK (Exploiting the Circulant Structure of Tracking-by-Detection with Kernels) tracking algorithm are studied, and it is found that the CSK algorithm can not achieve tracking when the target is occluded. Therefore, the CSK algorithm is improved. (3) algorithm test. According to this algorithm, lane detection and tracking test of the real scene. The results show that the proposed algorithm can detect the lane accurately and quickly, and the tracking results show that the Kalman filter and the CSK tracking algorithm are more efficient and faster than the Kalman tracking algorithm in comparing and analyzing the experimental data. Moreover, the improved CSK algorithm can successfully achieve occlusion target tracking.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U463.6;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 楊益;何穎;;基于RGB空間的車道線檢測(cè)與辨識(shí)方法[J];計(jì)算機(jī)與現(xiàn)代化;2014年02期
2 肖延勝;;為極速智能車保駕護(hù)航——記清華大學(xué)計(jì)算機(jī)系THMR課題組之智能汽車研究[J];中國(guó)發(fā)明與專利;2011年12期
3 張曦;黃亮;徐洋;郭冬霄;;基于MATLAB中calibration toolbox的相機(jī)標(biāo)定應(yīng)用研究[J];微型機(jī)與應(yīng)用;2011年14期
4 高德芝;鄭榜貴;段建民;;基于逆透視變換的智能車輛定位技術(shù)[J];計(jì)算機(jī)測(cè)量與控制;2009年09期
5 雷濤;樊養(yǎng)余;黃連冰;;Fast lane recognition based on morphological multi-structure element model[J];Optoelectronics Letters;2009年04期
6 孫振平,安向京,賀漢根;CITAVT-IV——視覺(jué)導(dǎo)航的自主車[J];機(jī)器人;2002年02期
相關(guān)會(huì)議論文 前1條
1 查宇飛;張育;畢篤彥;;一種基于粒子濾波的自適應(yīng)運(yùn)動(dòng)目標(biāo)跟蹤方法[A];第十二屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
相關(guān)碩士學(xué)位論文 前5條
1 謝茜;基于視覺(jué)的車道線檢測(cè)與識(shí)別[D];武漢理工大學(xué);2013年
2 孫占瑞;基于模糊聚類與模糊模式識(shí)別的車道偏離預(yù)警方法[D];燕山大學(xué);2012年
3 梁雄;自主導(dǎo)航車局部地圖創(chuàng)建研究[D];中南大學(xué);2011年
4 馬超;基于單目視覺(jué)的車道偏離預(yù)警系統(tǒng)設(shè)計(jì)[D];電子科技大學(xué);2011年
5 孟海崗;基于平面約束的CCD相機(jī)標(biāo)定方法改進(jìn)[D];吉林大學(xué);2009年
,本文編號(hào):2201541
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2201541.html