基于深度神經(jīng)網(wǎng)絡(luò)的微博短文本情感分析研究
[Abstract]:In recent years, with the gradual maturity of social network and the rapid development of mobile terminal technology, Weibo, as the main media form of network communication, is more and more popular. By expressing their views on Weibo, users spread their ideas, expressing their personal feelings, and at the same time, they also produced a large amount of information with the characteristics of personal subjective emotions, which contain different trends of emotional characteristics. In turn, the spread of network public opinion can have a huge impact. This paper studies the affective analysis of Weibo's short text on the Internet by using the method of deep learning. The main contents are as follows: (1) in order to better judge the emotional polarity of Weibo's short text, a method of emotion classification based on deep convolution neural network model is proposed. Firstly, the trained word vector is taken as the original feature vector, and then the feature vector is sent into convolution neural network (CNNs,Convolutional Neural Networks) model) to extract features, and then the emotion classification model based on this network is trained. Then we use the classifier to classify the Internet text. The experiment compares the CNNs model method based on the traditional machine learning algorithm with the CNNs model method of the random generating vector of the depth learning and the method proposed in this paper. Finally, the experimental results show that this method can be used to effectively classify emotion. (2) aiming at the problem of evaluation object extraction in Weibo's short text, An emotional element extraction method based on bidirectional long and short term memory loop neural network (Bidirectional Long Short-Term Memory,BLSTM) model is proposed. Compared with traditional machine learning model, cyclic neural network (Long Short-Term Memory,LSTM) and bidirectional long and short term memory circulatory neural network (Long Short-Term Memory,LSTM), we find that, Bidirectional long and short time memory loop neural network model based on deep learning can be used to deal with the evaluation object extraction task and the best result can be obtained.
【學(xué)位授予單位】:中原工學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔡慧蘋;王麗丹;段書凱;;基于word embedding和CNN的情感分類模型[J];計(jì)算機(jī)應(yīng)用研究;2016年10期
2 劉龍飛;楊亮;張紹武;林鴻飛;;基于卷積神經(jīng)網(wǎng)絡(luò)的微博情感傾向性分析[J];中文信息學(xué)報(bào);2015年06期
3 梁軍;柴玉梅;原慧斌;高明磊;昝紅英;;基于極性轉(zhuǎn)移和LSTM遞歸網(wǎng)絡(luò)的情感分析[J];中文信息學(xué)報(bào);2015年05期
4 任遠(yuǎn);巢文涵;周慶;李舟軍;;基于話題自適應(yīng)的中文微博情感分析[J];計(jì)算機(jī)科學(xué);2013年11期
5 周勝臣;瞿文婷;石英子;施詢之;孫韻辰;;中文微博情感分析研究綜述[J];計(jì)算機(jī)應(yīng)用與軟件;2013年03期
6 孫艷;周學(xué)廣;付偉;;基于主題情感混合模型的無(wú)監(jiān)督文本情感分析[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
7 謝麗星;周明;孫茂松;;基于層次結(jié)構(gòu)的多策略中文微博情感分析和特征抽取[J];中文信息學(xué)報(bào);2012年01期
8 昝紅英;郭明;柴玉梅;吳云芳;;新聞報(bào)道文本的情感傾向性研究[J];計(jì)算機(jī)工程;2010年15期
9 王素格;楊安娜;李德玉;;基于漢語(yǔ)情感詞表的句子情感傾向分類研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年24期
10 姚天f ;婁德成;;漢語(yǔ)語(yǔ)句主題語(yǔ)義傾向分析方法的研究[J];中文信息學(xué)報(bào);2007年05期
,本文編號(hào):2201428
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2201428.html