基于本體的茶學(xué)知識(shí)表示與應(yīng)用的研究
[Abstract]:In the Internet era, with the rapid development of information technology, knowledge is showing the trend of mass, multi-source, isomerization. How to organize and manage knowledge to obtain effectively is the research hotspot in the field of information retrieval. As a new knowledge organization tool ontology is widely used because of its good representation of semantic relations and the support of logical reasoning. Tea is one of the three largest non-alcoholic beverages in the world. Tea is grown all over the world. As the birthplace of tea, China has a long history of tea research. Tea knowledge involves cultivation, biochemistry, diseases and insect pests, laboratory studies, mechanics, and cultural practices. Under the background of this technology and knowledge, this paper takes the abundant tea knowledge as the research object, uses the ontology technology to realize the tea science knowledge organization and the retrieval system ontology application. This paper can be divided into three parts: the first part, this paper first of all, the definition of ontology, classification, application of learning, but also in-depth understanding of the development of organizational tools in the knowledge economy society, comparative analysis of the advantages and disadvantages of each organizational tool. It is pointed out that ontology is paid more attention to in the field of information organization. Because the research object of this paper is tea science, it is a part of agronomy. Therefore, the present situation of agricultural ontology research is also investigated and analyzed. The basic knowledge of ontology construction theory such as construction method is also investigated and analyzed. Editing tools and development tools are also studied to follow up the construction of tea ontology. The second part uses ontology learning method to construct tea ontology semi-automatically after investigating the disadvantages of artificial construction and expert dependence. After deeply analyzing the ontology learning methods, using the "seven steps" and "skeleton method" in the ontology construction method to construct the tea ontology, we first use the ICTCLAS word segmentation system to deal with the word segmentation and the part of speech tagging. The program was written to complete the deletion of designated parts of speech and stop words. Secondly, TF-IDF method was used to carry out the feature word selection based on weight to extract tea concept, to obtain candidate concept set, and to combine with thesaurus. The tea dictionaries and domain experts standardize and supplement the terms, then set the support degree and confidence threshold to identify the relationship between concepts according to the association rules mining method, and obtain the corresponding classes, attributes and examples of tea ontology through the above main steps. The formal representation is accomplished by using ontology editing software Prot e ge, which mainly includes the determination of class level, the setting of object attribute domain and range, the limitation of data attribute, and the steps of ontology evaluation and optimization. The logic consistency is checked by Prot ege's own HermiT inference machine, and the rationality of tea ontology is proved. In the third part, the application of knowledge retrieval based on tea ontology is discussed. Firstly, the difficulties of user faithful expression, word shape matching, the limitation of vocabulary island and the semantic matching of traditional information retrieval are expounded. The advantages of intelligent reasoning. Secondly, the key technologies of tea ontology knowledge retrieval are discussed, including the expansion of query function, the indexing of information resources and the realization of resource retrieval. Specifically, Jena semantic package is used for ontology reading and parsing ECL ipse development tool interface, which makes the retrieval system realize the semantic extension of synonyms, upper words and relational words in the retrieval method based on keywords. Improved a certain degree of recall and precision.
【學(xué)位授予單位】:南京農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周軍;曾小軍;管珊紅;武睿;黃細(xì)紅;;我國(guó)茶學(xué)類期刊學(xué)術(shù)影響力分析[J];江西農(nóng)業(yè)學(xué)報(bào);2014年12期
2 李倩;;論信息組織的新技術(shù)與新方法[J];情報(bào)探索;2013年11期
3 何來(lái)坤;繆健美;劉禮芳;潘紅;;基于Ontology與Jena的研究綜述[J];杭州師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期
4 王君君;李瑾;;農(nóng)村信息服務(wù)影響因素分析[J];湖北農(nóng)業(yè)科學(xué);2012年14期
5 劉萍;胡月紅;;領(lǐng)域本體學(xué)習(xí)方法和技術(shù)研究綜述[J];現(xiàn)代圖書情報(bào)技術(shù);2012年01期
6 張紅艷;都娟;;關(guān)聯(lián)規(guī)則中Apriori算法的應(yīng)用[J];數(shù)字技術(shù)與應(yīng)用;2011年08期
7 許高建;;茶蟲領(lǐng)域本體構(gòu)建及其應(yīng)用研究[J];蘇州大學(xué)學(xué)報(bào)(工科版);2011年02期
8 奉國(guó)和;鄭偉;;國(guó)內(nèi)中文自動(dòng)分詞技術(shù)研究綜述[J];圖書情報(bào)工作;2011年02期
9 林瀟;李紹穩(wěn);張友華;辜麗川;朱誠(chéng);倪冬平;;基于本體的水稻病害診斷專家系統(tǒng)研究[J];數(shù)字技術(shù)與應(yīng)用;2010年11期
10 李遠(yuǎn)華;;我國(guó)茶學(xué)學(xué)科發(fā)展的思考[J];高等農(nóng)業(yè)教育;2010年09期
相關(guān)博士學(xué)位論文 前1條
1 何琳;古農(nóng)學(xué)本體的半自動(dòng)構(gòu)建及檢索研究[D];南京農(nóng)業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前9條
1 林秀花;基于文化視角的中國(guó)茶產(chǎn)業(yè)可持續(xù)發(fā)展研究[D];北京工商大學(xué);2014年
2 戴才萍;水稻病蟲草害本體知識(shí)組織體系的構(gòu)建研究[D];安徽農(nóng)業(yè)大學(xué);2011年
3 李大鵬;基于本體的學(xué)科知識(shí)地圖構(gòu)建研究[D];華中師范大學(xué);2011年
4 李丹丹;基于本體的知識(shí)表示及信息檢索研究[D];西南交通大學(xué);2011年
5 孫奎;基于本體的果樹(shù)病蟲害知識(shí)表示與推理的研究[D];遼寧工程技術(shù)大學(xué);2011年
6 王莉;基于本體的知識(shí)檢索系統(tǒng)研究與實(shí)現(xiàn)[D];中國(guó)海洋大學(xué);2008年
7 鄒文科;基于本體技術(shù)的語(yǔ)義檢索及其語(yǔ)義相似度研究[D];北京郵電大學(xué);2008年
8 伊雯雯;專利信息檢索系統(tǒng)中本體半自動(dòng)構(gòu)建的研究與應(yīng)用[D];蘇州大學(xué);2008年
9 陳琮;基于Jena的本體檢索模型設(shè)計(jì)與實(shí)現(xiàn)[D];武漢大學(xué);2005年
,本文編號(hào):2201629
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2201629.html