基于用戶上網(wǎng)數(shù)據(jù)的電影個(gè)性化推薦系統(tǒng)研究
[Abstract]:In the past ten years, with the gradual popularization of the Internet in society, the phenomenon of information explosion is becoming more and more obvious. Users in various fields provide information for the Internet, which makes the Internet an all-encompassing and all-inclusive information aggregator. Internet users find it hard to quickly find information that suits their interests; each user uses a search engine to retrieve information with the same keyword and the same result. However, the information demand of users is diversified and individualized. Therefore, the traditional information retrieval system represented by homogeneous search engines can not meet the needs of thousands of users, and the personalized recommendation system has come to the front of the stage under this background. By mining the historical behavior data of users, the personalized recommendation system extracts the records related to interest, calculates the points of interest of users according to certain rules algorithm, and then proactively pushes the information to the users. Thus, the contradiction between the large amount of information and the difficulty of information selection is solved. The recommendation system continuously updates and iterates the user's interest by tracking the user's historical behavior for a long time, so that the recommended information always matches the user's point of interest, so that the user can obtain the information of his interest more conveniently. The ultimate goal is to achieve the user-oriented personalized customization push. This paper describes how to construct a complete film knowledge map so as to structurally describe user behavior, and divide films into independent films and series films according to the characteristics of the user's viewing behavior and the properties of the film itself. A finer-grained film knowledge map is constructed, and a set of algorithms for discovering film series is proposed. The basic data is the user's online request, which can obtain the user's interest in movies without the user's participation, and avoid the problems such as incompleteness and inconvenient of the user's subjective choice. Through analyzing and processing the user's original Internet request, The online data related to movies are extracted, and then, according to the movie knowledge map, the user's online behavior is mapped to user's interest behavior, and the purpose of extracting user's interest is achieved. Based on the TF-IDF algorithm, the user interest degree of each dimension is calculated, and the user interest model in vector form is constructed, and then the total interest degree of the user to the movie is calculated according to the interest degree of the user to each element of a movie. Finally, the high recall rate and accuracy of the proposed scheme are proved by experimental analysis.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王守];;走進(jìn)個(gè)性化推薦系統(tǒng)[J];程序員;2009年12期
2 張亞偉;蘇一丹;;基于移動(dòng)Agent的分布式個(gè)性化推薦系統(tǒng)[J];微計(jì)算機(jī)信息;2008年09期
3 許良;汪克夷;;基于移動(dòng)Agent的個(gè)性化推薦系統(tǒng)的研究[J];消費(fèi)導(dǎo)刊;2008年09期
4 劉洋;;面向電子商務(wù)網(wǎng)站的個(gè)性化推薦系統(tǒng)[J];中小企業(yè)管理與科技(上旬刊);2012年01期
5 麻旺勇;葉躍苗;;基于位置感知的個(gè)性化推薦系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];福建電腦;2014年01期
6 余建芳;;個(gè)性化推薦系統(tǒng)在民族院校圖書館信息服務(wù)中的設(shè)計(jì)探析——以甘肅民族師范學(xué)院圖書館為例[J];福建電腦;2014年01期
7 楊海濤;石磊;衛(wèi)琳;;一個(gè)基于搜索結(jié)果的個(gè)性化推薦系統(tǒng)[J];計(jì)算機(jī)工程與應(yīng)用;2006年32期
8 姜有輝;高琳琦;;個(gè)性化推薦系統(tǒng)中顧客信息的隱式采集方法研究[J];現(xiàn)代情報(bào);2006年11期
9 江秀佳;何源光;;國(guó)內(nèi)電子商務(wù)個(gè)性化推薦系統(tǒng)改進(jìn)研究[J];圖書情報(bào)工作;2009年16期
10 楊靜;;電子商務(wù)個(gè)性化推薦系統(tǒng)的構(gòu)建[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2012年28期
相關(guān)會(huì)議論文 前4條
1 黎隕;詹曉紅;孫莉;;基于頻繁遍歷路徑的個(gè)性化推薦系統(tǒng)[A];第二十屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2003年
2 周皓峰;高攀;施伯樂(lè);;一個(gè)基于興趣度包含負(fù)屬性項(xiàng)的關(guān)聯(lián)規(guī)則采掘算法[A];第十七屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2000年
3 曲爽;谷文祥;;基于興趣度和負(fù)項(xiàng)集的關(guān)聯(lián)規(guī)則挖掘算法的研究[A];2005年全國(guó)理論計(jì)算機(jī)科學(xué)學(xué)術(shù)年會(huì)論文集[C];2005年
4 方煒煒;楊炳儒;唐志剛;楊君;;基于客觀興趣度的關(guān)聯(lián)規(guī)則優(yōu)化算法研究[A];2008'中國(guó)信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(一)[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 國(guó)防科技大學(xué)計(jì)算機(jī)學(xué)院 應(yīng)曉敏 竇文華;古老概念的鳳凰涅i肹N];計(jì)算機(jī)世界;2003年
相關(guān)碩士學(xué)位論文 前10條
1 趙鵬程;基于用戶上網(wǎng)數(shù)據(jù)的電影個(gè)性化推薦系統(tǒng)研究[D];北京郵電大學(xué);2015年
2 倪鵬飛;基于顧客滿意度的電子商務(wù)個(gè)性化推薦系統(tǒng)評(píng)價(jià)研究[D];河北大學(xué);2015年
3 賈忠濤;電影個(gè)性化推薦系統(tǒng)的研究與實(shí)現(xiàn)[D];西南科技大學(xué);2015年
4 何俊;基于社交網(wǎng)絡(luò)的個(gè)性化推薦系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];貴州大學(xué);2015年
5 肖巧龍;基于用戶隱性行為的個(gè)性化推薦系統(tǒng)的設(shè)計(jì)及研究[D];南京財(cái)經(jīng)大學(xué);2014年
6 于淼;基于LBS的個(gè)性化推薦系統(tǒng)的研究與設(shè)計(jì)[D];北京郵電大學(xué);2015年
7 汪亭廷;美味網(wǎng)電子商務(wù)個(gè)性化推薦系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
8 陳博文;融合信任網(wǎng)絡(luò)的個(gè)性化推薦系統(tǒng)研究[D];上海交通大學(xué);2015年
9 溫瑞龍;基于社交網(wǎng)絡(luò)的個(gè)性化推薦系統(tǒng)研究與實(shí)現(xiàn)[D];浙江工業(yè)大學(xué);2015年
10 劉旭;基于情感權(quán)重的個(gè)性化推薦系統(tǒng)[D];南京郵電大學(xué);2015年
,本文編號(hào):2195787
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2195787.html