剪切波構(gòu)造方法研究及其在圖像處理中的應(yīng)用
[Abstract]:Wavelet transform is a kind of multi-resolution analysis method. Its transformation process is similar to pyramid transform and has been widely used in image processing and signal processing. The main energy of the image, the high frequency subband contains the detailed information of the image in different scales and directions. As a new mathematical tool, wavelet transform has good time-frequency analysis ability. It uses step-by-step fine time-domain sampling step for the high frequency part and "focuses" on any detail of the object, so it is also known as "mathematical display". However, the traditional wavelet transform can only capture the horizontal, vertical and diagonal information, and can not well represent the "line singularity" of the image. It has certain limitations in processing two-dimensional signals. Several reserve functions provide a new method for constructing shear waves on cones and low frequencies. Finite discrete shear wave transform has good localization and translation invariance. In order to improve the fusion accuracy of multi-focus images and infrared and visible images, a finite discrete shear wave is proposed. Firstly, low-frequency subband coefficients and high-frequency subband coefficients of different scales and directions are obtained by FDST decomposition of the image after strict registration. Then, low-frequency subband coefficients are fused by weighted image gradient information correlation factor. The high-frequency sub-band coefficients are fused by the contrast between the low-frequency coefficients and the high-frequency coefficients, and the contrast is used as the criterion for the selection of the measurement coefficients. Finally, the fused image is reconstructed by inverse transform of finite discrete shear wave, and the fused image is evaluated subjectively and objectively. Four different image fusion strategies are proposed to overcome the shortcomings of the existing image fusion process. To illustrate the effectiveness of the fusion strategy and the advantages of the finite discrete shear wave transform, the multi-focus image and the infrared and visible image are simulated. Firstly, the fusion results of the same fusion strategy in different transform domains are compared. The wavelet transform used here includes discrete wavelet transform (DWT), non-downsampling contour wave transform (NSCT), non-sampling dual-tree complex wavelet transform (UDTCWT), non-downsampling shear wave transform (NSST), finite discrete shear wave transform (FDST). Secondly, the wavelet transform used in the same transform domain is compared. Finally, the fusion results of different fusion strategies are compared with those of other fusion algorithms. The experimental results show that the proposed algorithm not only has good subjective visual effects, but also improves the objective indicators, which fully demonstrates the effectiveness of the proposed fusion algorithm.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧江洪;趙領(lǐng);;基于小波變換的激光雷達(dá)圖像融合研究[J];激光雜志;2015年12期
2 陳清江;王世恒;陳歡;;二元向量值雙正交小波濾波器的構(gòu)造與性質(zhì)[J];蘭州理工大學(xué)學(xué)報;2015年02期
3 鄭偉;孫雪青;李哲;;shearlet變換和區(qū)域特性相結(jié)合的圖像融合[J];激光技術(shù);2015年01期
4 陳廣秋;高印寒;劉廣文;孫俊喜;;有限離散剪切波域結(jié)合區(qū)域客觀評價的圖像融合[J];吉林大學(xué)學(xué)報(工學(xué)版);2014年06期
5 王正林;;基于對比度的小波圖像融合算法研究[J];激光與紅外;2014年09期
6 徐小軍;王友仁;陳帥;;基于下采樣分?jǐn)?shù)階小波變換的圖像融合新方法[J];儀器儀表學(xué)報;2014年09期
7 韓瀟;彭力;;基于改進(jìn)拉普拉斯金字塔的圖像融合方法[J];自動化與儀器儀表;2014年05期
8 王建;王必寧;楊根善;張少應(yīng);;基于形態(tài)學(xué)金字塔的醫(yī)學(xué)圖像融合技術(shù)[J];兵工自動化;2014年01期
9 童濤;楊桄;譚海峰;任春穎;;基于NSCT變換的多傳感器圖像融合算法[J];地理與地理信息科學(xué);2013年02期
10 石智;張卓;岳彥剛;;基于Shearlet變換的自適應(yīng)圖像融合算法[J];光子學(xué)報;2013年01期
相關(guān)博士學(xué)位論文 前5條
1 陳廣秋;基于多尺度分析的多傳感器圖像融合技術(shù)研究[D];吉林大學(xué);2015年
2 楊揚(yáng);基于多尺度分析的圖像融合算法研究[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2013年
3 宋宜美;圖像處理的超小波分析與變分方法研究[D];西安電子科技大學(xué);2012年
4 倪偉;基于多尺度幾何分析的圖像處理技術(shù)研究[D];西安電子科技大學(xué);2008年
5 衡彤;小波分析及其應(yīng)用研究[D];四川大學(xué);2003年
相關(guān)碩士學(xué)位論文 前2條
1 劉志國;小波框架與小波緊框架的構(gòu)造[D];陜西師范大學(xué);2006年
2 徐慧;實時數(shù)據(jù)庫中數(shù)據(jù)壓縮算法的研究[D];浙江大學(xué);2006年
,本文編號:2180835
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2180835.html