天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于流形學習的葡萄葉片品種識別方法研究

發(fā)布時間:2018-08-13 10:42
【摘要】:隨著葡萄市場經(jīng)濟的發(fā)展,葡萄品種識別對于葡萄這種經(jīng)濟作物的科普和市場推廣都具有重要意義。在葡萄品種識別研究中,一般以葉片為識別研究對象,主要考慮到葉片相對于果實來說易于保存且可采摘時間長,研究過程中不需要其他學科的輔助實驗。但是葡萄葉片識別存在一個明顯的難點,這種同科屬類葉片顏色和形態(tài)結構差異小,使得識別研究中準確率不高。為解決這個問題,本論文展開了針對同屬類葡萄葉片識別的研究,提出一種基于流形學習的葡萄葉片品種識別方案。本研究采用了15個品種的450幅葡萄葉片作為實驗樣本,進行葡萄品種的分類識別實驗。重點研究葡萄葉片的特征提取和特征降維。在特征提取部分,分別采用人工設計特征的灰度共生矩陣、方向梯度直方圖、可變性部件模型和由卷積神經(jīng)網(wǎng)絡提取的深度學習特征作為葉片特征,分析特征數(shù)據(jù)性質(zhì)和表現(xiàn)能力。發(fā)現(xiàn)高維度的特征表示葡萄葉片的能力優(yōu)于低維度,但是高維特征數(shù)據(jù)量大,冗余性高,雖然能夠得到較好的識別結果,但效率較低。為了降低高維葡萄葉片特征數(shù)據(jù)在識別過程中的復雜度,提高其實用性與實驗效率,本文采用流形學習算法對提取的高維葡萄葉片特征進行降維,在保持識別精度的基礎上,提高算法的效率,使其具有實用性。在葡萄葉片特征降維研究中,分別應用了局部線性嵌入(LLE)、拉普拉斯特征映射(LE)、局部保持投影(LPP)、臨近保持嵌入(NPE)四種不同的算法進行特征降維,得到葡萄葉片在低維空間的特征表示,并對影響降維性能的重點參數(shù)進行了分析;在葡萄葉片識別過程中,對比分析不同分類器的分類效果,最后通過訓練支持向量機(SVM)分類模型,進行葉片分類識別。本論文通過實驗分析驗證了流形降維在葡萄葉片識別中的可行性和必要性,流形降維能夠有效保持數(shù)據(jù)在高維空間的內(nèi)部結構特征。降維后的特征,在提高識別速度的同時,相對于降維前,仍具有良好的葉片識別準確性。其中利用卷積神經(jīng)網(wǎng)絡進行特征提取結合流形學習算法對其進行降維,識別率最高可以達到90.33%,識別性能優(yōu)于降維前的性能,并且識別速度大幅提高,相較于不做特征降維的識別時間而言,時間縮短為原來的1/3。對于人工設計特征的降維,降維后的識別時間有明顯的改善,其中DPM特征維度降為原來的1/30時,識別用時縮短為原來的1/6。本文的研究為葡萄葉片的快速識別,提供了一種有效的方法。
[Abstract]:With the development of grape market economy, grape variety identification is of great significance to the popularization of science and marketing of this kind of cash crop. In the research of grape variety recognition, the leaf is generally regarded as the object of study, considering that the leaf is easy to be preserved and can be picked for a long time compared with the fruit, and there is no need for the auxiliary experiment of other disciplines in the course of the research. However, there is an obvious difficulty in the leaf recognition of grape. The difference of leaf color and morphological structure of the same family, genus and species is small, which makes the accuracy of the recognition research not high. In order to solve this problem, this paper studies the leaf recognition of the same genus grape, and proposes a new method of grape leaf variety recognition based on manifold learning. In this study, 450 leaves of 15 grape varieties were used as experimental samples to classify and identify grape varieties. The feature extraction and dimensionality reduction of grape leaves were studied. In the part of feature extraction, the grayscale co-occurrence matrix, directional gradient histogram, variable component model and depth learning feature extracted from convolutional neural network are used as leaf features, respectively. Analyze the nature and performance of the feature data. It was found that the high dimension feature indicates that the ability of grape leaves is superior to that of the low dimension, but the high dimensional feature has large data volume and high redundancy, which can obtain better recognition results, but its efficiency is low. In order to reduce the complexity of high dimensional grape leaf feature data in recognition process and improve its practicability and experimental efficiency, this paper adopts manifold learning algorithm to reduce the dimension of the extracted high dimensional grape leaf feature, on the basis of maintaining the recognition accuracy. Improve the efficiency of the algorithm and make it practical. In the study of grape leaf feature dimensionality reduction, four different algorithms of locally linear embedded (LLE), Laplacian feature map, (LE), local preserving projection, (LPP), near preserving embedding (NPE), were used to reduce the dimension of grape leaves. The characteristic representation of grape leaves in low-dimensional space was obtained, and the key parameters affecting the performance of reducing dimension were analyzed. In the process of grape leaf recognition, the classification effect of different classifiers was compared and analyzed. Finally, by training support vector machine (SVM) classification model, the blade classification recognition. In this paper, the feasibility and necessity of manifold dimensionality reduction in grape blade recognition are verified by experimental analysis. Manifold dimensionality reduction can effectively maintain the internal structural characteristics of data in high-dimensional space. The features after dimensionality reduction can improve the recognition speed and still have good accuracy of blade recognition compared with those before dimensionality reduction. Among them, convolution neural network is used for feature extraction and manifold learning algorithm to reduce the dimension, the recognition rate can reach 90.33, the recognition performance is better than that before dimensionality reduction, and the recognition speed is greatly improved. Compared with the recognition time without feature reduction, the time is shortened to one third of the original time. For the dimensionality reduction of artificial design features, the recognition time after dimensionality reduction is obviously improved. When the DPM feature dimension is reduced to 1 / 30 of the original, the recognition time is shortened to 1 / 6 of the original. The research in this paper provides an effective method for rapid recognition of grape leaves.
【學位授予單位】:西北農(nóng)林科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S663.1;TP391.41

【參考文獻】

相關期刊論文 前10條

1 董冀媛;曾慧;穆志純;付冬梅;;局部切空間排列多姿態(tài)人耳識別[J];計算機輔助設計與圖形學學報;2015年05期

2 馬媛;馮全;楊梅;李妙祺;;基于HOG的釀酒葡萄葉檢測[J];計算機工程與應用;2016年15期

3 黃宏臣;韓振南;張倩倩;李月仙;張志偉;;基于拉普拉斯特征映射的滾動軸承故障識別[J];振動與沖擊;2015年05期

4 任國貞;江濤;;基于灰度共生矩陣的紋理提取方法研究[J];計算機應用與軟件;2014年11期

5 王偉;王秀蘭;馮仲科;劉芳;;基于Android手機的樹木葉片識別系統(tǒng)[J];廣東農(nóng)業(yè)科學;2014年18期

6 季偉;王力;;基于流形學習LPP算法的語音特征提取應用[J];通信技術;2013年12期

7 賈淵;李振江;彭增起;;結合LLE流形學習和支持向量機的豬肉顏色分級[J];農(nóng)業(yè)工程學報;2012年09期

8 羅芳瓊;;LLE流形學習的若干問題分析[J];現(xiàn)代計算機(專業(yè)版);2012年08期

9 姚明海;瞿心昱;;基于自適應子空間在線PCA的手勢識別[J];模式識別與人工智能;2011年02期

10 湯曉東;劉滿華;趙輝;陶衛(wèi);;復雜背景下的大豆葉片識別[J];電子測量與儀器學報;2010年04期

相關會議論文 前1條

1 曾九孫;郜傳厚;羅世華;李啟會;;基于增量LPP的在線過程監(jiān)控方法及其應用[A];中國自動化學會控制理論專業(yè)委員會C卷[C];2011年

相關博士學位論文 前4條

1 雷迎科;流形學習算法及其應用研究[D];中國科學技術大學;2011年

2 王燦;基于半監(jiān)督流形學習的Web信息檢索技術研究[D];浙江大學;2009年

3 李波;基于流形學習的特征提取方法及其應用研究[D];中國科學技術大學;2008年

4 黃啟宏;流形學習方法理論研究及圖像中應用[D];電子科技大學;2007年

相關碩士學位論文 前3條

1 孫宏杰;基于葉片圖像分析的葡萄品種識別方法研究[D];西北農(nóng)林科技大學;2016年

2 楊曉靜;基于流形學習的數(shù)據(jù)聚類與可視化[D];西安電子科技大學;2013年

3 劉俊寧;基于LPP算法的人臉識別技術研究[D];江蘇大學;2010年

,

本文編號:2180731

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2180731.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶7590c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com