天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于Spark的混合推薦系統(tǒng)的研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-06-27 05:07

  本文選題:推薦系統(tǒng) + Spark平臺(tái) ; 參考:《北京交通大學(xué)》2017年碩士論文


【摘要】:在大數(shù)據(jù)時(shí)代背景下,推薦系統(tǒng)已經(jīng)成為一個(gè)解決信息過載問題不可或缺的工具。一方面用戶通過推薦系統(tǒng)在海量的數(shù)據(jù)信息中篩選有用信息,獲得有力的決策支持。另一方面提供推薦服務(wù)的電商、多媒體服務(wù)商等希望通過推薦系統(tǒng)來對(duì)用戶進(jìn)行針對(duì)性的個(gè)性化營(yíng)銷以提高收益。近十年來推薦系統(tǒng)取得了突飛猛進(jìn)的發(fā)展,但仍面臨著諸多挑戰(zhàn)和問題,例如海量數(shù)據(jù)的存儲(chǔ)計(jì)算和擴(kuò)展性問題,原生的數(shù)據(jù)稀疏性問題,以及缺乏推薦系統(tǒng)的時(shí)效性問題等等。為了解決上述問題,本文基于Spark平臺(tái)研究并實(shí)現(xiàn)了一個(gè)針對(duì)電影領(lǐng)域的混合推薦系統(tǒng)。第一,研究了目前常用的矩陣因子分解方法,提出了一種混合了時(shí)間因子和鄰域信息的混合矩陣分解推薦算法。將用戶所在群體興趣隨時(shí)間遷移的因素考慮其中,并采用了動(dòng)量梯度下降的方式求解損失函數(shù),在參數(shù)求解速度提升的同時(shí)提高了算法的預(yù)測(cè)精確性;第二,針對(duì)協(xié)同過濾的相似度計(jì)算問題,提出了一種改進(jìn)的皮爾遜系數(shù)相似度計(jì)算方法,考慮了物品的熱度和個(gè)體評(píng)分偏置的影響。經(jīng)實(shí)驗(yàn)證明,該計(jì)算方法有效的降低了算法的均方根誤差;第三,針對(duì)推薦系統(tǒng)的時(shí)效性問題,本文采用了增量ALS矩陣分解算法。對(duì)于新獲取的信息,局部的修改模型而避免對(duì)模型的重新訓(xùn)練,節(jié)省了巨大的計(jì)算花銷。實(shí)驗(yàn)證明,增量ALS較目前流行的增量SGD具有更快的交互速度和更高的準(zhǔn)確度,有效的提高了系統(tǒng)的反應(yīng)速度;最后本文基于Spark平臺(tái)設(shè)計(jì)并實(shí)現(xiàn)了一個(gè)電影推薦系統(tǒng),包括了日志收集、數(shù)據(jù)處理和混合推薦引擎等主要模塊,并融合了上述優(yōu)化方法,有效的改善了目前推薦系統(tǒng)遇到的主要問題。
[Abstract]:Under the background of big data, recommendation system has become an indispensable tool to solve the problem of information overload. On the one hand, users filter useful information through recommendation system to obtain powerful decision support. On the other hand, ecommerce providers and multimedia service providers who provide recommendation services hope to use recommendation system to carry out targeted personalized marketing to improve revenue. In the past decade, the recommendation system has made great progress, but it still faces many challenges and problems, such as the storage, computation and expansibility of massive data, the sparsity of native data. And the lack of recommendation system timeliness and so on. In order to solve the above problems, this paper studies and implements a hybrid recommendation system for film field based on Spark platform. Firstly, the matrix factorization methods are studied, and a hybrid matrix factorization recommendation algorithm is proposed, which combines the time factor and neighborhood information. Considering the factor that the user's group interests migrate with time, the loss function is solved by decreasing the momentum gradient, which improves the prediction accuracy of the algorithm while improving the speed of solving the parameters. An improved method for calculating the similarity of Pearson coefficient is proposed to solve the problem of similarity calculation of collaborative filtering. The effects of heat and individual bias are considered. Experimental results show that the algorithm can effectively reduce the root mean square error. Thirdly, the incremental ALS matrix decomposition algorithm is used to solve the time-efficiency problem of recommendation system. For the newly acquired information, the local modification of the model avoids the re-training of the model and saves huge computational costs. Experimental results show that the incremental ALS has faster interaction speed and higher accuracy than the popular incremental SGD. Finally, this paper designs and implements a movie recommendation system based on Spark platform. Including log collection, data processing and hybrid recommendation engine and other major modules, and the integration of the above optimization methods, effectively improve the main problems encountered in the current recommendation system.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 龔燦;盧軍;;基于Spark的實(shí)時(shí)情境推薦系統(tǒng)關(guān)鍵技術(shù)研究[J];電子測(cè)試;2016年Z1期

2 車晉強(qiáng);謝紅薇;;基于Spark的分層協(xié)同過濾推薦算法[J];電子技術(shù)應(yīng)用;2015年09期

,

本文編號(hào):2072776

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2072776.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9416b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
av在线免费观看一区二区三区| 色婷婷日本视频在线观看| 亚洲人妻av中文字幕| 最近的中文字幕一区二区| 狠色婷婷久久一区二区三区| 国产欧美日韩不卡在线视频| 中文字幕中文字幕在线十八区| 成年人免费看国产视频| 美日韩一区二区精品系列| 国产精品免费不卡视频| 国产欧美一区二区久久| 久久99一本色道亚洲精品| 老司机这里只有精品视频| 日本午夜免费观看视频| 97人妻精品免费一区二区| 日本熟女中文字幕一区| 日韩人妻有码一区二区| 精产国品一二三区麻豆| 九九热精品视频免费观看| 欧美不卡一区二区在线视频| 欧美日韩国产自拍亚洲| 久久福利视频这里有精品| 欧美日韩综合在线第一页| 日本黄色高清视频久久| 日本一二三区不卡免费| 国产一区欧美午夜福利| 亚洲精品中文字幕熟女| 91亚洲精品亚洲国产| 夫妻性生活一级黄色录像| 日韩人妻精品免费一区二区三区| 亚洲国产精品久久精品成人| 91日韩欧美国产视频| 日韩亚洲精品国产第二页| 日本大学生精油按摩在线观看| 日本高清中文精品在线不卡| 亚洲熟女熟妇乱色一区| 国产精品免费视频专区| 日韩日韩日韩日韩在线| 国产91人妻精品一区二区三区| 亚洲伦片免费偷拍一区| 久久夜色精品国产高清不卡|