基于模糊TS-MRF模型的無監(jiān)督聲納圖像分割
發(fā)布時間:2018-06-05 01:56
本文選題:聲納圖像分割 + 樹結(jié)構(gòu)化的馬爾可夫隨機(jī)場(TS-MRF); 參考:《華中科技大學(xué)學(xué)報(自然科學(xué)版)》2017年05期
【摘要】:為解決聲納圖像本身特征信息較弱,而樹結(jié)構(gòu)化的馬爾可夫隨機(jī)場(TS-MRF)算法在分割中過分依賴祖先節(jié)點(diǎn),且在標(biāo)號分割中僅考慮區(qū)域內(nèi)部一致性而忽視區(qū)域邊緣的各向異性的問題,提出了一種模糊樹結(jié)構(gòu)化的馬爾可夫隨機(jī)場(TS-MRF)模型的聲納圖像分割算法.在TS-MRF勢函數(shù)中引入廣義模糊算子,以模糊隸屬度作為像素相似度度量,將鄰域信息融入到分裂節(jié)點(diǎn)參數(shù)的確定中,使得先驗(yàn)概率的刻畫更加精細(xì).已知圖像觀測特征前提下定義分裂增益系數(shù)來反映分裂前、后標(biāo)號后驗(yàn)概率的比值,并將對增益系數(shù)的判斷作為確定二叉樹節(jié)點(diǎn)分裂的依據(jù),降低求解后驗(yàn)概率最大的計(jì)算復(fù)雜度.結(jié)合區(qū)域分裂合并方法完成對聲納圖像無監(jiān)督分割.實(shí)驗(yàn)結(jié)果從視覺效果和客觀評價表明:本分割方法相比于傳統(tǒng)MRF和TS-MRF等分割算法,具有較高的分割精度和高魯棒性.
[Abstract]:In order to solve the problem that the feature information of sonar image is weak, the tree structured Markov random field (TS-MRF) algorithm relies too much on the ancestor nodes in segmentation. The anisotropy of the edge of the region is only considered in label segmentation. A fuzzy tree structured Markov random field (TS-MRF) model is proposed for sonar image segmentation. The generalized fuzzy operator is introduced into the TS-MRF potential function and the fuzzy membership degree is used as the pixel similarity measure. The neighborhood information is incorporated into the parameter determination of the split node, which makes the characterization of the priori probability more precise. Based on the known image observation characteristics, the splitting gain coefficient is defined to reflect the ratio of pre-splitting and post-label posteriori probability, and the judgment of gain coefficient is taken as the basis for determining the division of binary tree nodes. Reduce the computational complexity of the maximum posteriori probability. The unsupervised segmentation of sonar image is accomplished by combining region splitting and merging method. The experimental results show that the proposed method has higher segmentation accuracy and robustness than the traditional MRF and TS-MRF segmentation algorithms.
【作者單位】: 三峽大學(xué)水電工程智能視覺監(jiān)測湖北省重點(diǎn)實(shí)驗(yàn)室;三峽大學(xué)計(jì)算機(jī)與信息學(xué)院;
【基金】:國家自然科學(xué)基金(聯(lián)合基金)重點(diǎn)資助項(xiàng)目(U1401252);國家自然科學(xué)基金資助項(xiàng)目(61272237) 湖北省重點(diǎn)實(shí)驗(yàn)室開放基金資助項(xiàng)目(2015KLA05)
【分類號】:TP391.41
,
本文編號:1979898
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1979898.html
最近更新
教材專著