基于膚色分割和統(tǒng)計(jì)模板匹配的手勢(shì)識(shí)別人機(jī)交互系統(tǒng)
發(fā)布時(shí)間:2018-06-05 01:18
本文選題:單目視覺 + 膚色分割; 參考:《廣東技術(shù)師范學(xué)院》2017年碩士論文
【摘要】:近年來,隨著計(jì)算機(jī)領(lǐng)域技術(shù)發(fā)展迅猛,更加自然、高效的新型人機(jī)交互方式不斷涌現(xiàn)。手勢(shì)是人類的基本溝通方式之一,其符合人類的日常交流習(xí)慣;趩文恳曈X技術(shù),通過手勢(shì)識(shí)別實(shí)現(xiàn)更符合人類交流習(xí)慣的人機(jī)交互,已成為人機(jī)交互領(lǐng)域的研究熱點(diǎn)。目前,雖有不少手勢(shì)膚色分割和手勢(shì)識(shí)別算法被提出,但現(xiàn)有的算法在識(shí)別率、執(zhí)行效率、以及實(shí)用性等方面仍然存在不足,有待改進(jìn)。比如,大多數(shù)靜態(tài)手勢(shì)識(shí)別算法的復(fù)雜度高,而且在復(fù)雜背景或光照條件差的環(huán)境下難以獲得理想的手勢(shì)分割效果,進(jìn)而導(dǎo)致手勢(shì)識(shí)別率低下。針對(duì)這些問題,本文著重圍繞手勢(shì)膚色分割和靜態(tài)手勢(shì)識(shí)別這兩個(gè)方面開展理論及應(yīng)用研究,主要完成的工作及貢獻(xiàn)如下:1.在分析相關(guān)技術(shù)的基礎(chǔ)上,提出了一種綜合多要素的手勢(shì)膚色分割方法。該方法首先采用橢圓膚色模型對(duì)膚色進(jìn)行初步分割,然后利用運(yùn)動(dòng)物體檢測(cè)方法建立背景模型來排除背景中近似膚色的區(qū)域,進(jìn)而結(jié)合人臉識(shí)別技術(shù)排除人臉膚色區(qū)域,最終分割出手勢(shì)膚色區(qū)域。實(shí)驗(yàn)結(jié)果表明,本文提出的手勢(shì)膚色分割方法在復(fù)雜背景或光照條件差的環(huán)境下能獲得較好的手勢(shì)分割效果。2.提出了一種簡(jiǎn)單有效的統(tǒng)計(jì)模板匹配算法,用以實(shí)現(xiàn)靜態(tài)手勢(shì)識(shí)別。首先,基于正態(tài)分布概率模型,利用采集得到的手勢(shì)圖像樣本生成各種手勢(shì)對(duì)應(yīng)的統(tǒng)計(jì)模板特征;其次,利用模板特征定義手勢(shì)圖像之間的相似度,進(jìn)而設(shè)計(jì)匹配判斷規(guī)則對(duì)手勢(shì)圖像進(jìn)行區(qū)分,以判斷待識(shí)別手勢(shì)圖像對(duì)應(yīng)的手勢(shì)類別。針對(duì)11種手勢(shì)的識(shí)別實(shí)驗(yàn)結(jié)果表明,本文提出的算法能獲得高于93.5%的平均識(shí)別率,優(yōu)于現(xiàn)有的同類算法。3.將前述提出的手勢(shì)膚色分割和手勢(shì)識(shí)別算法應(yīng)用于人機(jī)交互,以C++為編程語(yǔ)言,結(jié)合MFC開發(fā)框架及OpenCV開源庫(kù),設(shè)計(jì)并實(shí)現(xiàn)了一個(gè)手勢(shì)識(shí)別交互系統(tǒng)。該系統(tǒng)提供了11種手勢(shì),利用這些手勢(shì)可以模擬鼠標(biāo)和鍵盤操作,達(dá)到控制PPT、播放器等軟件操作的目的。該系統(tǒng)界面友好,執(zhí)行效率高,具有較高的通用性。
[Abstract]:In recent years, with the rapid development of computer technology, more natural, efficient and new human-computer interaction methods are emerging. Gesture is one of the basic ways of human communication, which accords with human daily communication habits. Based on monocular vision technology, it has become a research hotspot in the field of human-computer interaction to realize human-computer interaction which is more in line with human communication habits through gesture recognition. At present, although a lot of gesture color segmentation and gesture recognition algorithms have been proposed, the existing algorithms in recognition rate, execution efficiency, and practicability are still insufficient, and need to be improved. For example, most static gesture recognition algorithms have high complexity, and it is difficult to obtain ideal gesture segmentation results in complex background or poor lighting conditions, which leads to low gesture recognition rate. In order to solve these problems, this paper focuses on the theoretical and applied research of gesture skin color segmentation and static gesture recognition. The main work and contributions are as follows: 1. Based on the analysis of related techniques, a new method of gesture skin color segmentation is proposed. In this method, the skin color is initially segmented by using elliptical skin color model, and then the background model is established by moving object detection method to exclude the region of approximate skin color in the background, and then the skin color region of face is excluded by combining face recognition technology. Finally, the skin area of the gesture is segmented. The experimental results show that the proposed skin color segmentation method can achieve a better result of gesture segmentation under complex background or poor illumination conditions. A simple and effective statistical template matching algorithm is proposed to realize static gesture recognition. Firstly, based on the probability model of normal distribution, the statistical template features of various gesture images are generated by using the collected gesture image samples. Secondly, the similarity between gesture images is defined by template features. Then the matching judgment rules are designed to distinguish the gesture images to judge the corresponding gesture categories of the gesture images to be recognized. The experimental results of 11 hand gestures recognition show that the proposed algorithm can achieve an average recognition rate of more than 93.5%, which is better than the existing similar algorithm .3. The algorithm of gesture skin color segmentation and gesture recognition is applied to human-computer interaction. An interactive system of gesture recognition is designed and implemented by using C as programming language combined with MFC development framework and OpenCV open source library. The system provides 11 gestures which can be used to simulate mouse and keyboard operations to control PPTs, players and other software operations. The system has friendly interface, high execution efficiency and high generality.
【學(xué)位授予單位】:廣東技術(shù)師范學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易靖國(guó);程江華;庫(kù)錫樹;;視覺手勢(shì)識(shí)別綜述[J];計(jì)算機(jī)科學(xué);2016年S1期
2 趙飛飛;劉U嗱,
本文編號(hào):1979747
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1979747.html
最近更新
教材專著