天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于膚色分割和統(tǒng)計(jì)模板匹配的手勢(shì)識(shí)別人機(jī)交互系統(tǒng)

發(fā)布時(shí)間:2018-06-05 01:18

  本文選題:單目視覺 + 膚色分割; 參考:《廣東技術(shù)師范學(xué)院》2017年碩士論文


【摘要】:近年來,隨著計(jì)算機(jī)領(lǐng)域技術(shù)發(fā)展迅猛,更加自然、高效的新型人機(jī)交互方式不斷涌現(xiàn)。手勢(shì)是人類的基本溝通方式之一,其符合人類的日常交流習(xí)慣;趩文恳曈X技術(shù),通過手勢(shì)識(shí)別實(shí)現(xiàn)更符合人類交流習(xí)慣的人機(jī)交互,已成為人機(jī)交互領(lǐng)域的研究熱點(diǎn)。目前,雖有不少手勢(shì)膚色分割和手勢(shì)識(shí)別算法被提出,但現(xiàn)有的算法在識(shí)別率、執(zhí)行效率、以及實(shí)用性等方面仍然存在不足,有待改進(jìn)。比如,大多數(shù)靜態(tài)手勢(shì)識(shí)別算法的復(fù)雜度高,而且在復(fù)雜背景或光照條件差的環(huán)境下難以獲得理想的手勢(shì)分割效果,進(jìn)而導(dǎo)致手勢(shì)識(shí)別率低下。針對(duì)這些問題,本文著重圍繞手勢(shì)膚色分割和靜態(tài)手勢(shì)識(shí)別這兩個(gè)方面開展理論及應(yīng)用研究,主要完成的工作及貢獻(xiàn)如下:1.在分析相關(guān)技術(shù)的基礎(chǔ)上,提出了一種綜合多要素的手勢(shì)膚色分割方法。該方法首先采用橢圓膚色模型對(duì)膚色進(jìn)行初步分割,然后利用運(yùn)動(dòng)物體檢測(cè)方法建立背景模型來排除背景中近似膚色的區(qū)域,進(jìn)而結(jié)合人臉識(shí)別技術(shù)排除人臉膚色區(qū)域,最終分割出手勢(shì)膚色區(qū)域。實(shí)驗(yàn)結(jié)果表明,本文提出的手勢(shì)膚色分割方法在復(fù)雜背景或光照條件差的環(huán)境下能獲得較好的手勢(shì)分割效果。2.提出了一種簡(jiǎn)單有效的統(tǒng)計(jì)模板匹配算法,用以實(shí)現(xiàn)靜態(tài)手勢(shì)識(shí)別。首先,基于正態(tài)分布概率模型,利用采集得到的手勢(shì)圖像樣本生成各種手勢(shì)對(duì)應(yīng)的統(tǒng)計(jì)模板特征;其次,利用模板特征定義手勢(shì)圖像之間的相似度,進(jìn)而設(shè)計(jì)匹配判斷規(guī)則對(duì)手勢(shì)圖像進(jìn)行區(qū)分,以判斷待識(shí)別手勢(shì)圖像對(duì)應(yīng)的手勢(shì)類別。針對(duì)11種手勢(shì)的識(shí)別實(shí)驗(yàn)結(jié)果表明,本文提出的算法能獲得高于93.5%的平均識(shí)別率,優(yōu)于現(xiàn)有的同類算法。3.將前述提出的手勢(shì)膚色分割和手勢(shì)識(shí)別算法應(yīng)用于人機(jī)交互,以C++為編程語(yǔ)言,結(jié)合MFC開發(fā)框架及OpenCV開源庫(kù),設(shè)計(jì)并實(shí)現(xiàn)了一個(gè)手勢(shì)識(shí)別交互系統(tǒng)。該系統(tǒng)提供了11種手勢(shì),利用這些手勢(shì)可以模擬鼠標(biāo)和鍵盤操作,達(dá)到控制PPT、播放器等軟件操作的目的。該系統(tǒng)界面友好,執(zhí)行效率高,具有較高的通用性。
[Abstract]:In recent years, with the rapid development of computer technology, more natural, efficient and new human-computer interaction methods are emerging. Gesture is one of the basic ways of human communication, which accords with human daily communication habits. Based on monocular vision technology, it has become a research hotspot in the field of human-computer interaction to realize human-computer interaction which is more in line with human communication habits through gesture recognition. At present, although a lot of gesture color segmentation and gesture recognition algorithms have been proposed, the existing algorithms in recognition rate, execution efficiency, and practicability are still insufficient, and need to be improved. For example, most static gesture recognition algorithms have high complexity, and it is difficult to obtain ideal gesture segmentation results in complex background or poor lighting conditions, which leads to low gesture recognition rate. In order to solve these problems, this paper focuses on the theoretical and applied research of gesture skin color segmentation and static gesture recognition. The main work and contributions are as follows: 1. Based on the analysis of related techniques, a new method of gesture skin color segmentation is proposed. In this method, the skin color is initially segmented by using elliptical skin color model, and then the background model is established by moving object detection method to exclude the region of approximate skin color in the background, and then the skin color region of face is excluded by combining face recognition technology. Finally, the skin area of the gesture is segmented. The experimental results show that the proposed skin color segmentation method can achieve a better result of gesture segmentation under complex background or poor illumination conditions. A simple and effective statistical template matching algorithm is proposed to realize static gesture recognition. Firstly, based on the probability model of normal distribution, the statistical template features of various gesture images are generated by using the collected gesture image samples. Secondly, the similarity between gesture images is defined by template features. Then the matching judgment rules are designed to distinguish the gesture images to judge the corresponding gesture categories of the gesture images to be recognized. The experimental results of 11 hand gestures recognition show that the proposed algorithm can achieve an average recognition rate of more than 93.5%, which is better than the existing similar algorithm .3. The algorithm of gesture skin color segmentation and gesture recognition is applied to human-computer interaction. An interactive system of gesture recognition is designed and implemented by using C as programming language combined with MFC development framework and OpenCV open source library. The system provides 11 gestures which can be used to simulate mouse and keyboard operations to control PPTs, players and other software operations. The system has friendly interface, high execution efficiency and high generality.
【學(xué)位授予單位】:廣東技術(shù)師范學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 易靖國(guó);程江華;庫(kù)錫樹;;視覺手勢(shì)識(shí)別綜述[J];計(jì)算機(jī)科學(xué);2016年S1期

2 趙飛飛;劉U嗱,

本文編號(hào):1979747


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1979747.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e2318***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日本午夜福利视频免费观看| 亚洲一区精品二人人爽久久| 又色又爽又无遮挡的视频| 日韩国产亚洲一区二区三区| 又色又爽又无遮挡的视频 | 国产一区二区三区四区中文| 免费在线观看欧美喷水黄片| 久久精品久久精品中文字幕| 色一欲一性一乱—区二区三区| 青青操日老女人的穴穴| 精品国模一区二区三区欧美| 欧美日韩中国性生活视频| 老司机这里只有精品视频| 九九热在线免费在线观看| 99久只有精品免费视频播放 | 日本熟女中文字幕一区| 亚洲欧洲一区二区中文字幕| 精品欧美国产一二三区| 免费观看在线午夜视频| 欧美黑人巨大一区二区三区| 精品综合欧美一区二区三区| 日韩午夜老司机免费视频| 精品日韩欧美一区久久| 国产一级精品色特级色国产| 国产欧美日韩在线精品一二区| 亚洲日本加勒比在线播放| 久久亚洲精品中文字幕| 色婷婷国产熟妇人妻露脸| 老司机精品视频在线免费看| 精品国产av一区二区三区不卡蜜| 亚洲一区二区福利在线| 久久热九九这里只有精品| 日本一本在线免费福利| 国产又粗又硬又大又爽的视频| 亚洲熟女一区二区三四区| 欧美日韩在线观看自拍| 五月激情综合在线视频| 清纯少妇被捅到高潮免费观看| 老鸭窝老鸭窝一区二区| 五月的丁香婷婷综合网| 男人把女人操得嗷嗷叫|