前饋型基因調(diào)控網(wǎng)絡(luò)中噪聲的傳播機(jī)制研究
[Abstract]:Biological system is dominated by randomness and certainty. Fluctuations and noise have penetrated into all levels of biological system. More and more evidence shows that the expression of noise plays an important role in many biological processes. As a typical form of gene module, the structure, function and dynamics of feedforward gene regulatory network motif have attracted more and more attention in recent ten years. A large number of experiments show that the number of molecules involved in biochemical reactions in life activities is relatively small, the fluctuations and noise are very obvious, and the effects of different network motifs on noise are also different. Therefore, the relationship between noise and feedforward loop structure in biochemical system is studied, the source of noise is traced back, their roles in feedforward adjustment path are understood, and the mechanism and general principle of noise propagation in feedforward loop are expounded. It is one of the important contents of quantitative biology research at present. In this paper, aiming at the dynamic model of feedforward gene regulatory network, the random dynamic properties and noise propagation mechanism of feedforward gene regulatory network are deeply analyzed by using random dynamics method and computer simulation technology. The following results have been obtained: (1) taking the consistent feedforward transcriptional regulatory loop as the research object, the propagation characteristics and noise decomposition principle of random noise in feedforward gene regulatory networks are obtained. Firstly, based on the dynamic model of consistent feedforward gene transcriptional regulatory network, the feedforward gene transcriptional regulatory loop is decomposed into two parts: the main circuit and the branch, and the chemical master equation satisfied by the joint probability distribution is written. The fluctuation-dissipation formula is obtained by using linear noise approximation, and the variance and covariance which can describe the statistical properties of random variables are obtained. Then, with the help of the concept of logarithmic gain function, the fluctuation-dissipation formula is standardized, and the theoretical expressions of the total noise of the whole loop, the noise of the main circuit and the noise of the branch are derived analytically. Finally, the theoretical results are verified by random simulation. We find that compared with the noise of the main circuit and the branch, the full model of the feedforward ring can effectively reduce the output noise level. There is a conversion point in the system. When the system is below the conversion point, the noise of the main road is dominant, and the noise of the branch road is dominant when the conversion point is above the conversion point. We take a very simple signal transduction module as an example to reveal how noise is generated and transmitted. The noise decomposition principle of consistent feedforward gene regulatory networks is clarified. (2) the output noise characteristics and propagation mechanism of various feedforward transcriptional regulatory circuits, including "and gate", are further studied. Consistent and inconsistent feedforward rings in the case of "OR gate". By introducing logarithmic gain coefficient, the theoretical formula of noise decomposition is derived by using linear noise approximation method, and the theoretical results are verified by random simulation. According to the theory and simulation results of noise decomposition algorithm, the nonlinear behavior of modal noise transmission in feedforward gene network is analyzed, and three general conclusions are obtained: first, The second-order noise propagation of the upstream factor of the "gate" inconsistent feedforward loop is negative, that is to say, the upstream factor can indirectly suppress the noise of the downstream factor. Secondly, the first-order propagation of the upstream factor of the "OR gate" consistent feedforward ring is non-monotonous, so the upstream factor is nonlinear to the direct control of the downstream factor noise. Finally, when the branch in the feedforward ring is negatively regulated, the total noise of the downstream factor increases monotonously. We summarize the general noise characteristics and propagation mechanism of feedforward control networks, which provides a preliminary result for revealing the role of noise in function and evolution.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:Q811.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易東,楊夢蘇,李輝智,黃明輝,王文昌;相關(guān)分析在建立基因調(diào)控網(wǎng)絡(luò)中的應(yīng)用[J];中國衛(wèi)生統(tǒng)計(jì);2003年03期
2 張家軍;蔡傳政;王翼飛;;基因調(diào)控網(wǎng)絡(luò)中的延滯動力學(xué)[J];應(yīng)用科學(xué)學(xué)報(bào);2007年01期
3 郭子龍;紀(jì)兆華;涂華偉;梁艷春;;基因調(diào)控網(wǎng)絡(luò)的研究內(nèi)容及其數(shù)據(jù)分析方法[J];電腦知識與技術(shù);2008年15期
4 陳少白;羅嘉;;一類基因調(diào)控網(wǎng)絡(luò)的定性分析[J];南京信息工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
5 李慶偉;全俊龍;劉欣;;基因調(diào)控網(wǎng)絡(luò)研究進(jìn)展[J];遼寧師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
6 葉緯明;呂彬彬;趙琛;狄增如;;少節(jié)點(diǎn)基因調(diào)控網(wǎng)絡(luò)的控制[J];物理學(xué)報(bào);2013年01期
7 王沛;呂金虎;;基因調(diào)控網(wǎng)絡(luò)的控制:機(jī)遇與挑戰(zhàn)[J];自動化學(xué)報(bào);2013年12期
8 易東,李輝智;基因調(diào)控網(wǎng)絡(luò)研究與數(shù)學(xué)模型的建立[J];中國現(xiàn)代醫(yī)學(xué)雜志;2003年24期
9 雷耀山,史定華,王翼飛;基因調(diào)控網(wǎng)絡(luò)的生物信息學(xué)研究[J];自然雜志;2004年01期
10 姜偉;李霞;郭政;李傳星;王麗虹;饒紹奇;;時(shí)間延遲基因調(diào)控網(wǎng)絡(luò)重構(gòu)的決策樹方法研究[J];中國科學(xué)(C輯:生命科學(xué));2005年06期
相關(guān)會議論文 前6條
1 熊江輝;李瑩輝;;基因芯片數(shù)據(jù)分析的新方法與基因調(diào)控網(wǎng)絡(luò)推理[A];全面建設(shè)小康社會:中國科技工作者的歷史責(zé)任——中國科協(xié)2003年學(xué)術(shù)年會論文集(上)[C];2003年
2 王亞麗;周彤;;大規(guī);蛘{(diào)控網(wǎng)絡(luò)因果關(guān)系的辨識[A];第二十九屆中國控制會議論文集[C];2010年
3 馮晶;許勇;李娟娟;;非高斯噪聲激勵下基因調(diào)控網(wǎng)絡(luò)的研究[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運(yùn)動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
4 趙偉;;新媒體與日常生活實(shí)踐研究——以“\L絲”一詞的傳播機(jī)制與社會心理研究為例[A];第三屆華中地區(qū)新聞與傳播學(xué)科研究生學(xué)術(shù)論壇獲獎?wù)撐腫C];2012年
5 楊靜;;略論“輿論倒逼”傳播機(jī)制與路徑[A];媒介化社會的社會文明建構(gòu)——第四屆“華中地區(qū)研究生新聞傳播學(xué)術(shù)論壇”優(yōu)秀論文集[C];2013年
6 張寶龍;倪四道;夏英杰;周勇;;用數(shù)值方法研究T波產(chǎn)生及傳播機(jī)制[A];2014年中國地球科學(xué)聯(lián)合學(xué)術(shù)年會——專題12:強(qiáng)震機(jī)理、孕育環(huán)境與地震活動性分析論文集[C];2014年
相關(guān)重要報(bào)紙文章 前2條
1 通訊員 劉穎;哈爾濱:建立氣象預(yù)警信息快速傳播機(jī)制[N];中國氣象報(bào);2013年
2 衣曉峰 劉思國 張艷禾;豬源大腸桿菌耐藥基因分子傳播機(jī)制被揭示[N];中國醫(yī)藥報(bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 桂容;前饋型基因調(diào)控網(wǎng)絡(luò)中噪聲的傳播機(jī)制研究[D];華中師范大學(xué);2017年
2 王毅;一類基因調(diào)控網(wǎng)絡(luò)的動力學(xué)研究[D];上海大學(xué);2009年
3 張律文;基因調(diào)控網(wǎng)絡(luò)的數(shù)值研究[D];上海大學(xué);2010年
4 艾對元;幾種基因調(diào)控網(wǎng)絡(luò)的比較[D];蘭州大學(xué);2008年
5 凌光;基因調(diào)控網(wǎng)絡(luò)的動態(tài)演化特性分析與控制[D];華中科技大學(xué);2016年
6 徐紅林;基因調(diào)控網(wǎng)絡(luò)的建模及其結(jié)構(gòu)分解方法研究[D];江南大學(xué);2010年
7 王政霞;時(shí)滯基因調(diào)控網(wǎng)絡(luò)的穩(wěn)定性研究[D];重慶大學(xué);2009年
8 緱葵香;基于貝葉斯理論的基因調(diào)控網(wǎng)絡(luò)建模研究[D];天津大學(xué);2010年
9 劉輝;基因調(diào)控網(wǎng)絡(luò)的建模與學(xué)習(xí)研究[D];復(fù)旦大學(xué);2009年
10 沈威;基于微分方程模型構(gòu)建基因調(diào)控網(wǎng)絡(luò)的研究[D];吉林大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 何東;基于多信息融合建立基因調(diào)控網(wǎng)絡(luò)[D];華中科技大學(xué);2007年
2 葛玲玲;基于動態(tài)貝葉斯模型的基因調(diào)控網(wǎng)絡(luò)構(gòu)建方法研究[D];合肥工業(yè)大學(xué);2010年
3 張如貝;基于微分方程模型的基因調(diào)控網(wǎng)絡(luò)穩(wěn)定性分析[D];南京信息工程大學(xué);2011年
4 朱云濤;在內(nèi)部參數(shù)波動和外部噪聲干擾下的基因調(diào)控網(wǎng)絡(luò)魯棒控制器的設(shè)計(jì)[D];山東科技大學(xué);2010年
5 羅嘉;一類基因調(diào)控網(wǎng)絡(luò)的定性分析[D];武漢科技大學(xué);2010年
6 王拓;基因調(diào)控網(wǎng)絡(luò)的線性回歸模型及其魯棒性分析[D];西安電子科技大學(xué);2012年
7 于阿會;基于微分方程模型的基因調(diào)控網(wǎng)絡(luò)的穩(wěn)定性分析[D];黑龍江大學(xué);2013年
8 于雄香;基因調(diào)控網(wǎng)絡(luò)的函數(shù)泛化及干預(yù)研究[D];溫州大學(xué);2015年
9 徐德文;DNA調(diào)控網(wǎng)絡(luò)分析與數(shù)字化表征[D];河北工業(yè)大學(xué);2015年
10 鄒佳華;含混合時(shí)滯基因調(diào)控網(wǎng)絡(luò)的穩(wěn)定性分析[D];黑龍江大學(xué);2015年
,本文編號:2483374
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2483374.html