基于花粉管通道法的轉(zhuǎn)基因玉米材料的獲得、分子檢測和表型鑒定
[Abstract]:Corn is one of the three major food crops in the world, and it is also an important industrial raw material. Its yield and quality are of vital importance to human beings. Among the many adversity factors affecting crop yield and quality drought is undoubtedly a common and influential adversity stress which is an important problem restricting agricultural production. The effects of drought stress on the growth and development of maize were very great. China is an agricultural production country with serious water shortage, especially in northwest China. Without effective irrigation methods, crops are in drought stress for a long time. Therefore, using transgenic technology to improve drought resistance of maize varieties is a quick and effective way to reduce the effect of drought on maize yield and quality. Root system is an important organ of plants. Its main function is to absorb water and nutrients and synthesize essential hormones. Whether the root system is developed or not is directly related to the drought resistance ability of maize, which affects the composition of the upper ground parts of maize such as stem and leaf, as well as the final yield. Cytokinin is closely related to plant growth and development. The key enzyme in its metabolic pathway is cytokinin oxidase (CKX), which can regulate the content of cytokinin in plants. And then regulate the growth and development of each part of plant tissues and organs. In this study, a rice root-specific expression gene, EXP18D promoter, was linked to the CKX gene and transformed into maize inbred lines to promote the growth and development of their roots, with a view to obtaining drought-tolerant maize varieties. In this study, AtCKX3 gene was introduced into maize inbred lines by pollen tube pathway. After spraying glyphosate herbicide on T _ 0, T _ 1 and T _ 2 generations, 130 transgenic homozygous lines with glyphosate resistance were obtained. Then, the T _ 2 homozygous lines were identified for drought tolerance, and 10 transgenic lines with strong drought tolerance were selected. Then it was proved that glyphosate-resistant herbicide gene EPSP and target gene CKX3 had been successfully introduced into the genome of maize inbred lines C92, 2416572 by molecular detection and some routine root measurements, and the gene could be inherited and expressed stably. The physiological and yield indexes such as plant height, leaf area, 1000-grain weight and so on in drought-treated transgenic lines and C92, 2416 inbred lines were determined. The results showed that the CKX3 transgenic lines were obviously superior to C92 inbred lines in each index. In addition, eight inbred lines (572) with T _ 4 homozygous transgenic lines and 572 inbred lines at seedling stage were tested. The results showed that the drought tolerance of transgenic homozygous lines with over-expression of CKX3 gene was higher than that of inbred lines. The results showed that the drought tolerance of transgenic homozygous lines with higher T _ 4 generation and 572 inbred lines was higher than that of inbred lines. Based on the micro-drop digital PCR platform, a copy number analysis method of foreign genes in transgenic maize was established, and the samples were identified quickly. Several single copies of transgenic maize lines were identified from T _ 0 generation transgenic maize lines, and a single copy analysis method for transgenic maize plants was established, and several single copy single plants were identified from the T _ 0 generation transgenic maize lines. The accuracy of the method is compared with that of real-time fluorescence quantitative PCR. From the experimental data, it can be seen that the results of the two methods are relatively consistent, and the results of single copy detection are highly consistent. But the ddPCR test operation is more simple, the test results are repeatable, and the test data are more accurate and reliable. Studies have shown that ddPCR is a more convenient, rapid and accurate method for the analysis of foreign gene copy numbers, which is based on its significant advantages in accuracy and sensitivity. It will be widely used in the analysis of foreign gene copy number in transgenic crops.
【學(xué)位授予單位】:長江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S513
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;轉(zhuǎn)基因玉米產(chǎn)生的毒物可滲入土壤[J];安徽農(nóng)業(yè)技術(shù)師范學(xué)院學(xué)報(bào);2000年01期
2 ;美發(fā)現(xiàn)轉(zhuǎn)基因玉米產(chǎn)生的毒物可滲入土壤[J];世界熱帶農(nóng)業(yè)信息;2000年02期
3 黎裕,王天宇,石云素;轉(zhuǎn)基因玉米的研究現(xiàn)狀與未來[J];玉米科學(xué);2000年04期
4 ;美發(fā)現(xiàn)轉(zhuǎn)基因玉米產(chǎn)生的毒物可滲入土壤[J];飼料廣角;2000年01期
5 毛磊;;轉(zhuǎn)基因玉米產(chǎn)生的毒物可滲入土壤[J];農(nóng)藥市場信息;2000年02期
6 ;美國農(nóng)民慎重種植轉(zhuǎn)基因玉米[J];中國農(nóng)業(yè)信息快訊;2001年03期
7 ;美最新研究懷疑轉(zhuǎn)基因玉米抗害蟲的能力[J];世界科技研究與發(fā)展;2001年05期
8 汪重;;美發(fā)現(xiàn)轉(zhuǎn)基因玉米產(chǎn)生的毒物可滲入土壤[J];農(nóng)藥市場信息;2001年04期
9 未名;美國環(huán)保局重行批準(zhǔn)使用轉(zhuǎn)基因玉米[J];環(huán)境污染與防治;2002年03期
10 ;法美科學(xué)家為轉(zhuǎn)基因玉米“平反”[J];種子世界;2002年05期
相關(guān)會議論文 前9條
1 王悅冰;郎志宏;黃大f ;;利用瞬時(shí)表達(dá)體系檢測不同內(nèi)含子在轉(zhuǎn)基因玉米中的增強(qiáng)效應(yīng)[A];中國農(nóng)業(yè)生物技術(shù)學(xué)會第三屆會員代表大會暨學(xué)術(shù)交流會論文摘要集[C];2006年
2 韓庚辰;;我國轉(zhuǎn)基因玉米產(chǎn)業(yè)化的機(jī)遇與挑戰(zhàn)[A];創(chuàng)新生物經(jīng)濟(jì)環(huán)境,培育戰(zhàn)略新興產(chǎn)業(yè)——第四屆中國生物產(chǎn)業(yè)大會·2010海峽兩岸重大生物技術(shù)產(chǎn)業(yè)化論壇會刊[C];2010年
3 張士龍;賀正華;黃益勤;;抗蟲、耐漬轉(zhuǎn)基因玉米種質(zhì)的創(chuàng)制[A];2012年全國玉米遺傳育種學(xué)術(shù)研討會暨新品種展示觀摩會論文及摘要集[C];2012年
4 曹修嶺;路銀貴;邸墊平;張志燕;劉賀;田蘭芝;張愛紅;張艷敬;石林丹;徐進(jìn);段西飛;韓成貴;苗洪芹;李大偉;于嘉林;;rnc70基因介導(dǎo)的高抗RBSDV轉(zhuǎn)基因玉米新品系的創(chuàng)制[A];中國植物病理學(xué)會2012年學(xué)術(shù)年會論文集[C];2012年
5 陳威;王坤;王學(xué)永;劉麗;番興明;;高賴氨酸轉(zhuǎn)基因玉米的鑒定和檢測[A];2012年全國玉米遺傳育種學(xué)術(shù)研討會暨新品種展示觀摩會論文及摘要集[C];2012年
6 張紅偉;張紅梅;鄭祖平;陳剛;王國英;譚振波;;Bt轉(zhuǎn)基因玉米的獲得及其對玉米螟的抗性分析[A];2003年全國作物遺傳育種學(xué)術(shù)研討會論文集[C];2003年
7 張紅偉;譚振波;劉欣潔;楊華;;Bt轉(zhuǎn)基因玉米株系T123抗螟性和主要農(nóng)藝性狀的鑒定分析[A];2004全國玉米種質(zhì)擴(kuò)增、改良、創(chuàng)新與分子育種學(xué)術(shù)會議論文集[C];2004年
8 張紅偉;劉欣潔;譚振波;;Bt轉(zhuǎn)基因玉米株系T123的培育及其抗螟性和農(nóng)藝性狀的鑒定分析[A];科技、工程與經(jīng)濟(jì)社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學(xué)術(shù)年會論文集[C];2004年
9 徐海濱;張曉霞;李芳;王國英;劉允軍;;Cry1Ie基因在大腸桿菌中的表達(dá)及等同性鑒定[A];達(dá)能營養(yǎng)中心青年科學(xué)工作者論壇優(yōu)秀論文集2007年第1期[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 王龍?jiān)?歐盟擬對轉(zhuǎn)基因玉米發(fā)“通行證”[N];經(jīng)濟(jì)參考報(bào);2004年
2 鄭曉春;英擬對轉(zhuǎn)基因玉米種植開綠燈[N];科技日報(bào);2004年
3 記者 張亮;大批轉(zhuǎn)基因玉米流入美國市場[N];科技日報(bào);2005年
4 記者柴世寬、熊思浩;贊拒絕美轉(zhuǎn)基因玉米[N];人民日報(bào);2002年
5 記者 盧蘇燕 王艷紅;科學(xué)家為轉(zhuǎn)基因玉米平反[N];新華每日電訊;2002年
6 盧蘇燕;就轉(zhuǎn)基因玉米上市 歐盟未能達(dá)成一致[N];新華每日電訊;2005年
7 本報(bào)記者 張桂敏;轉(zhuǎn)基因玉米種子在菲律賓喜憂參半[N];農(nóng)資導(dǎo)報(bào);2006年
8 記者 張之簡;法國暫停種植轉(zhuǎn)基因玉米[N];經(jīng)濟(jì)參考報(bào);2008年
9 記者 劉鋼;長期吃某種轉(zhuǎn)基因玉米,可能影響老鼠生育[N];新華每日電訊;2008年
10 胡軍華;孟山都:轉(zhuǎn)基因玉米影響生育缺乏依據(jù)[N];第一財(cái)經(jīng)日報(bào);2008年
相關(guān)博士學(xué)位論文 前8條
1 周宏專;豬病毒性腹瀉病轉(zhuǎn)基因玉米疫苗的研究[D];中國農(nóng)業(yè)科學(xué)院;2014年
2 路興波;轉(zhuǎn)基因玉米環(huán)境安全性及其產(chǎn)品成分檢測技術(shù)[D];山東農(nóng)業(yè)大學(xué);2006年
3 赫福霞;抗蟲/耐草甘膦多價(jià)轉(zhuǎn)基因玉米的研究[D];東北農(nóng)業(yè)大學(xué);2008年
4 王柏鳳;轉(zhuǎn)基因玉米對跳蟲的影響[D];中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2014年
5 馬金霞;非編碼基因zm401對玉米小孢子發(fā)育的影響[D];中國農(nóng)業(yè)大學(xué);2005年
6 李京;新型轉(zhuǎn)基因抗草甘膦玉米的培育及轉(zhuǎn)基因玉米安全控制技術(shù)的研究[D];浙江大學(xué);2013年
7 孫鶴;連接肽2A和LP4/2A在玉米中的剪切分析及抗蟲耐除草劑轉(zhuǎn)基因玉米的獲得[D];中國農(nóng)業(yè)科學(xué)院;2012年
8 白云鳳;利用不同策略獲得抗SCMV轉(zhuǎn)基因玉米的研究[D];中國農(nóng)業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 楊文霞;赤霉菌Gibberella sp.F75來源的α-半乳糖苷酶轉(zhuǎn)基因玉米的培育[D];中國農(nóng)業(yè)科學(xué)院;2015年
2 任珍靜;轉(zhuǎn)mAM79基因玉米的獲得及草甘膦抗性分析[D];中國農(nóng)業(yè)科學(xué)院;2015年
3 李玲;轉(zhuǎn)NJB(Cry1Ab/Cry2Aj)和G10evo基因玉米“12-5”的營養(yǎng)學(xué)評價(jià)研究[D];天津醫(yī)科大學(xué);2015年
4 楊歡;富維生素E轉(zhuǎn)基因玉米對0~3周齡肉仔雞生產(chǎn)性能和抗氧化能力的影響[D];甘肅農(nóng)業(yè)大學(xué);2015年
5 王兆明;轉(zhuǎn)基因玉米檢測的內(nèi)參基因篩選與鑒定[D];安徽農(nóng)業(yè)大學(xué);2014年
6 楊麗麗;Bt-mCry1Ac基因在抗蟲轉(zhuǎn)基因玉米中的表達(dá)及其對斑馬魚毒性效應(yīng)的初步研究[D];安徽農(nóng)業(yè)大學(xué);2014年
7 王江;兩種代表性生物對轉(zhuǎn)基因玉米響應(yīng)的生物學(xué)特性研究[D];哈爾濱師范大學(xué);2016年
8 王清華;轉(zhuǎn)基因玉米BT11和T-25品系環(huán)介導(dǎo)等溫?cái)U(kuò)增(LAMP)檢測方法的建立[D];大連工業(yè)大學(xué);2014年
9 趙思楠;轉(zhuǎn)基因玉米“雙抗12-6”草甘膦耐受性、生存競爭力及其對雜草多樣性影響的研究[D];浙江大學(xué);2016年
10 金學(xué)博;一種新型幾丁質(zhì)酶基因LcChi2在轉(zhuǎn)基因玉米中的功能分析[D];吉林農(nóng)業(yè)大學(xué);2016年
,本文編號:2434536
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2434536.html