微博轉基因輿情的社會網(wǎng)絡分析
[Abstract]:With the advent of the Internet era, network public opinion has become a barometer of social sentiment and public opinion. As one of the most popular online social platforms in recent years, Weibo has not only become a platform for information communication and knowledge sharing among Internet users because of its advantages of timeliness of communication, autonomy of content, and friendliness of interaction, etc. And to develop into the network of public opinion distribution center. Among them, "transgenic" has been one of the hot topics on Weibo. Transgenic technology as a new technology, new industry, itself has a very broad development prospects. Seizing the commanding height of GM technology is also one of our country's science and technology development strategies. However, the research and popularization of transgenic field in China is limited by many factors, the most prominent of which is the public's doubts about the safety of GM. Many netizens take part in the discussion of genetically modified genes through Weibo, and the public sentiment of the transgenic gene on Weibo is in full swing now, so it is of certain significance to explore the transgenic public opinion of Weibo. This article first combs the network public opinion and Weibo public opinion related literature, compares the domestic and foreign research progress and the characteristic, and then puts forward several theoretical exploration: (1) does Weibo communication accord with the complex social network characteristic, (2) can social network analysis method reflect the characteristics of Weibo's public opinion; (3) can social network analysis method reveal the evolution of Weibo's public opinion; Then take the transgenic network public opinion as an example, analyzes its present situation and the characteristic, then uses the network reptile to carry on the data mining to the Sina Weibo contain "transgenic" Weibo, gathers from August 2009 to the end of 2014 2700348 contains "genetically modified" Weibo; Then, according to the Weibo user data, the forwarding relationship network is constructed, in which 363640 Weibo users participate in the "transgenic" forwarding, and the overall network analysis of the forwarding relationship network is carried out through Pajek. Individual network analysis and aggregation subgroup analysis, combined with the number of followers of opinion leaders, Weibo's number of retweets and daily activity, as well as their Weibo authentication identity and attitude towards GM, as well as developments and changes at different time nodes. Further analysis of their influence and appeal in the process of GMO public opinion transmission; Finally, it summarizes the usability of social network analysis method in Weibo public opinion dissemination according to empirical research. This paper uses the social network analysis method to analyze Weibo transgenic public opinion, based on the dynamic research perspective, through the extraction of Weibo opinion leaders, Finally, the following conclusions are drawn: (1) the dissemination of public opinion of Weibo accords with the small-world and scale-free characteristics of complex social networks; (2) the social network analysis method can reflect the characteristics of Weibo's public opinion dissemination, (3) the social network analysis method can reveal the evolution of Weibo's public opinion. From this, we can see that in the process of spreading Weibo's public opinion, not only can the opinion leaders be identified by constructing the user's forwarding relationship network, but also by using the social network analysis indexes. They can also be found in recent years in the spread of genetically modified public opinion in the process of development.
【學位授予單位】:南京農(nóng)業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:G206
【參考文獻】
相關期刊論文 前10條
1 何建民;李雪;;面向微博輿情演化分析的隱馬爾科夫模型研究[J];情報科學;2016年04期
2 翁士洪;張云;;公共議程設置中微博輿情互動的社會網(wǎng)絡分析[J];武漢大學學報(人文科學版);2016年01期
3 高杰;楊劍;;論網(wǎng)絡輿情危機管理視域下政府形象的構建——基于官員形象的反面案例分析[J];黨政干部論壇;2016年01期
4 杜楊沁;;政務微博整體網(wǎng)絡的關系解剖[J];現(xiàn)代情報;2015年09期
5 全燕;;行走在“科學精神”和“社會契約”間的轉基因風險傳播[J];新聞界;2015年16期
6 蘇創(chuàng);彭錦;李圣國;;基于不確定微分方程的網(wǎng)絡輿情傳播模型研究[J];系統(tǒng)工程理論與實踐;2015年12期
7 ;兩會:轉基因研究的“國家態(tài)度”引熱議[J];種業(yè)導刊;2015年04期
8 王晰巍;邢云菲;趙丹;李嘉興;;基于社會網(wǎng)絡分析的移動環(huán)境下網(wǎng)絡輿情信息傳播研究——以新浪微博“霧霾”話題為例[J];圖書情報工作;2015年07期
9 楊輝;尚智叢;;微博科學傳播機制的社會網(wǎng)絡分析——以轉基因食品議題為例[J];科學學研究;2015年03期
10 朱毅華;張超群;;基于影響模型的網(wǎng)絡輿情演化與傳播仿真研究[J];情報雜志;2015年02期
相關博士學位論文 前4條
1 方潔;微博輿情利益相關者的分類及行為動因研究[D];南京大學;2014年
2 丁兆云;面向微博輿情的影響力分析關鍵技術研究[D];國防科學技術大學;2013年
3 萬源;基于語義統(tǒng)計分析的網(wǎng)絡輿情挖掘技術研究[D];武漢理工大學;2012年
4 王宇紅;我國轉基因食品安全政府規(guī)制研究[D];西北農(nóng)林科技大學;2012年
相關碩士學位論文 前10條
1 米昂;結合影響力分析的微博輿情溯源研究[D];北京交通大學;2015年
2 丁潔;基于社會網(wǎng)絡的網(wǎng)絡輿情演化研究[D];南京理工大學;2015年
3 張東杰;名人微博輿論的傳播機制及其可視化研究[D];哈爾濱工業(yè)大學;2014年
4 孫榮德;基于復合網(wǎng)的微博用戶行為特征研究[D];青島大學;2014年
5 王愛玲;反腐類微博輿情熱點演化機制研究[D];山東大學;2014年
6 余琪;政務微博中政府信息公開的效果評價研究[D];華中師范大學;2014年
7 孫海燕;網(wǎng)絡輿情傳播模型研究[D];山東大學;2014年
8 彭利斌;微博熱點話題發(fā)現(xiàn)與話題演化的研究[D];桂林電子科技大學;2014年
9 任士偉;政府應對網(wǎng)絡輿情的路徑研究[D];蘇州大學;2014年
10 顧淑雯;基于社會網(wǎng)絡視角下的機構投資者對公司治理效率的影響[D];上海交通大學;2014年
,本文編號:2411986
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2411986.html