基于微陣列數(shù)據(jù)的基因調(diào)控網(wǎng)絡(luò)構(gòu)建方法研究
[Abstract]:Gene regulatory network is a regulatory network formed by the interaction of genes in cells. It is the main mechanism of controlling gene expression in organisms. The construction of gene regulatory networks is one of the important means to understand the nature of life activities. Therefore, the construction of gene regulatory networks using high-throughput experimental data, especially microarray data, has become a hot research topic in the field of system biology. However, most of the existing methods of constructing gene regulation network based on microarray have some problems, such as the direction of regulation can not be determined or the computational complexity is too high. In this paper, a method of constructing gene regulatory network is proposed, which combines the existing correlation test method and ordinary differential equation modeling method. Firstly, the Pearson correlation coefficient between genes is calculated by perturbing experimental data, and then an initial gene regulation network is constructed by Z-score sequencing method. On this basis, the initial control network is optimized by using time series data and ordinary differential equation modeling method. After the ordinary differential equation model is established, the problem of gene network derivation is transformed into a model parameter estimation problem. In this paper, a Tabu search based particle swarm optimization (PSO) algorithm is proposed to estimate the model parameters. In order to reduce the computational complexity, the time series expression spectrum data are first fitted by curve fitting method, and the differential of each time point is estimated. In this way, the parameter estimation problem of differential equations is transformed into a pseudo-multivariate linear regression problem, and the computational time is greatly reduced. Finally, we use the standard test set and the real microarray data to verify the proposed method. The results show that the algorithm proposed in this paper is more sensitive, specific and accurate than the existing methods in the construction of gene regulation network. At the same time, the computational speed of the proposed algorithm is faster than that of the existing methods.
【學(xué)位授予單位】:東北師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:Q811.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 易東,楊夢蘇,李輝智,黃明輝,王文昌;相關(guān)分析在建立基因調(diào)控網(wǎng)絡(luò)中的應(yīng)用[J];中國衛(wèi)生統(tǒng)計(jì);2003年03期
2 張家軍;蔡傳政;王翼飛;;基因調(diào)控網(wǎng)絡(luò)中的延滯動力學(xué)[J];應(yīng)用科學(xué)學(xué)報(bào);2007年01期
3 郭子龍;紀(jì)兆華;涂華偉;梁艷春;;基因調(diào)控網(wǎng)絡(luò)的研究內(nèi)容及其數(shù)據(jù)分析方法[J];電腦知識與技術(shù);2008年15期
4 陳少白;羅嘉;;一類基因調(diào)控網(wǎng)絡(luò)的定性分析[J];南京信息工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
5 李慶偉;全俊龍;劉欣;;基因調(diào)控網(wǎng)絡(luò)研究進(jìn)展[J];遼寧師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
6 葉緯明;呂彬彬;趙琛;狄增如;;少節(jié)點(diǎn)基因調(diào)控網(wǎng)絡(luò)的控制[J];物理學(xué)報(bào);2013年01期
7 王沛;呂金虎;;基因調(diào)控網(wǎng)絡(luò)的控制:機(jī)遇與挑戰(zhàn)[J];自動化學(xué)報(bào);2013年12期
8 易東,李輝智;基因調(diào)控網(wǎng)絡(luò)研究與數(shù)學(xué)模型的建立[J];中國現(xiàn)代醫(yī)學(xué)雜志;2003年24期
9 雷耀山,史定華,王翼飛;基因調(diào)控網(wǎng)絡(luò)的生物信息學(xué)研究[J];自然雜志;2004年01期
10 姜偉;李霞;郭政;李傳星;王麗虹;饒紹奇;;時(shí)間延遲基因調(diào)控網(wǎng)絡(luò)重構(gòu)的決策樹方法研究[J];中國科學(xué)(C輯:生命科學(xué));2005年06期
相關(guān)會議論文 前3條
1 熊江輝;李瑩輝;;基因芯片數(shù)據(jù)分析的新方法與基因調(diào)控網(wǎng)絡(luò)推理[A];全面建設(shè)小康社會:中國科技工作者的歷史責(zé)任——中國科協(xié)2003年學(xué)術(shù)年會論文集(上)[C];2003年
2 王亞麗;周彤;;大規(guī);蛘{(diào)控網(wǎng)絡(luò)因果關(guān)系的辨識[A];第二十九屆中國控制會議論文集[C];2010年
3 馮晶;許勇;李娟娟;;非高斯噪聲激勵下基因調(diào)控網(wǎng)絡(luò)的研究[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運(yùn)動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
相關(guān)重要報(bào)紙文章 前1條
1 吳佳s,
本文編號:2195985
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2195985.html