天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 基因論文 >

腫瘤驅(qū)動(dòng)基因的分析預(yù)測(cè)及其在肝癌中功能的初步研究

發(fā)布時(shí)間:2018-08-06 10:38
【摘要】:研究背景鑒定腫瘤驅(qū)動(dòng)基因(cancer driver genes)一直都是腫瘤學(xué)研究的熱點(diǎn),目前已經(jīng)有多種基于腫瘤基因組學(xué)的工具被開發(fā),其中dJ/dS方法從不同角度鑒定了新的腫瘤驅(qū)動(dòng)基因。dJ/dS僅考慮了基因外顯子(exon)和內(nèi)含子(intron)的剪接位點(diǎn)(junction site,J)突變情況,若J位點(diǎn)發(fā)生突變,則pre-mRNA剪接過程失敗,進(jìn)而無法產(chǎn)生正常的成熟mRNA,從而造成基因功能喪失(loss of function),最后誘導(dǎo)細(xì)胞癌變;谶@個(gè)思路,該方法借鑒了遺傳學(xué)工具dN/dS的計(jì)算原理,用 Junction mutation(J)和 Synonymous mutation(S)觀察值之比(obs_JS)除以期望值之比(exp_JS),即dJ/dS=obs_JS/exp_JS,若dJ/dS1,則認(rèn)為有正選擇效應(yīng);若dJ/dS1則認(rèn)為有純化選擇作用;如果dJ/dS=1則認(rèn)為無選擇壓力。我們認(rèn)為腫瘤發(fā)生過程中驅(qū)動(dòng)基因受到了正選擇作用。相比其他方法,dJ/dS更好地控制了背景突變率(background mutation rate,BMR),提高了方法的靈敏度。但仍存在兩個(gè)不足之處:一、dJ/dS在考慮J突變時(shí)只計(jì)算了發(fā)生在splice donor(GT)和splice acceptor(AG)四個(gè)位點(diǎn)上的突變,而有研究表明這四個(gè)位點(diǎn)臨近的區(qū)域發(fā)生突變也會(huì)引起剪接失敗,導(dǎo)致疾病發(fā)生,因此將剪接位點(diǎn)周圍的區(qū)域納入J的計(jì)算會(huì)更加準(zhǔn)確;二、dJ/dS在計(jì)算突變譜(mutation spectrum)時(shí)僅考慮了 12種突變類型,但有文獻(xiàn)報(bào)道緊鄰?fù)蛔兾稽c(diǎn)的堿基N(ATCG)可能極大地影響突變,所以突變譜采用96種類型計(jì)算更科學(xué)。因此我們?cè)诒狙芯恐袑?duì)dJ/dS的上述兩點(diǎn)不足進(jìn)行改進(jìn),開發(fā)dJ/dS2.0版本,并結(jié)合TCGA(The Cancer Genome Atlas)33種實(shí)體瘤的數(shù)據(jù)對(duì)腫瘤驅(qū)動(dòng)基因重新分析預(yù)測(cè)。驅(qū)動(dòng)基因在腫瘤中的功能研究也是一項(xiàng)非常重要的課題。癌變過程十分復(fù)雜,癌基因和抑癌基因在癌變過程中起重要的調(diào)控作用,多種因素可以影響癌基因和抑癌基因的突變,有研究報(bào)道人種和性別是影響基因突變的重要因素,而且部分基因突變會(huì)使得腫瘤預(yù)后更差,我們將以肝癌為研究模型來探討驅(qū)動(dòng)基因在肝癌中的作用。肝癌是世界上第六位常見的惡性腫瘤,死亡率高居第三位,每年有超過70萬新發(fā)病例,且呈逐年增加趨勢(shì)。手術(shù)切除是目前早期肝癌最有效的治療手段,但術(shù)后五年復(fù)發(fā)率超過50%。近年隨著測(cè)序技術(shù)的快速發(fā)展,肝癌基因組學(xué)研究取得了很大進(jìn)步,為篩選臨床診療及預(yù)后的基因標(biāo)志物提供了新的技術(shù)手段。本研究擬從兩個(gè)方面開展:①改進(jìn)dJ/dS方法并用于鑒定腫瘤驅(qū)動(dòng)基因;②以肝癌為研究模型,結(jié)合dJ/dS2.0、dT/dS和MutSig2.0的預(yù)測(cè)結(jié)果,初步分析驅(qū)動(dòng)基因在肝癌中的功能。研究目的1.改進(jìn)dJ/dS算法,開發(fā)dJ/dS2.0版本,并將之用于dJ/dS2.0腫瘤驅(qū)動(dòng)基因的預(yù)測(cè);2.初步研究驅(qū)動(dòng)基因在肝癌中的功能。研究方法(一)dJ/dS算法的改進(jìn)1.dJ/dS2.所用數(shù)據(jù):本次研究納入TCGA的33種實(shí)體瘤的數(shù)據(jù)。2.dJ/dS2.0的計(jì)算方法a)計(jì)算突變譜:以不受選擇壓力影響的四倍簡(jiǎn)并位點(diǎn)上的突變計(jì)算每種腫瘤的突變譜,同時(shí)采用96種突變類型表示突變譜,即考慮突變位點(diǎn)前后的堿基,如 NCNNTN,N 代表 ATCG;b)J突變的計(jì)算原則:在原dJ/dS方法J的基礎(chǔ)上還納入了緊鄰剪接位點(diǎn)的外顯子上3個(gè)堿基和內(nèi)含子上6個(gè)堿基,共11個(gè)突變位點(diǎn);c)S突變的計(jì)算原則:納入每個(gè)基因上所有同義突變;d)計(jì)算期望JS比值(exp_JS):采用上一步得到的突變譜分別計(jì)算每個(gè)基因的J和S的期望值(expectation,exp),然后用J的期望值比上S的期望值,即exp_JS = exp_J/exp_S;e)計(jì)算實(shí)際觀察JS比值(obs_JS):從TCGA外顯子測(cè)序數(shù)據(jù)中分別統(tǒng)計(jì)J和S的觀察值(observation,obs),然后用J的觀察值比上S的觀察值,即obs_JS=obs_J/obs_S;f)計(jì)算dJ/dS比值:用實(shí)際觀察的JS比值除以期望的JS比值得到dJ/dS比值,即dJ/dS obs_J S/exp_J S;(二)驅(qū)動(dòng)基因在肝癌中的功能研究1.肝癌數(shù)據(jù)來源:TCGA和ICGC;2.驅(qū)動(dòng)基因和通路的鑒定:綜合dJ/dS2.0,dT/dS和MutSig2.0三種方法在肝癌數(shù)據(jù)中的鑒定結(jié)果,并利用得到的驅(qū)動(dòng)基因進(jìn)行通路分析(pathway analysis);3.驅(qū)動(dòng)基因的功能分析:結(jié)合肝癌臨床資料,分析驅(qū)動(dòng)基因和通路在人種和性別間的突變差異,以及對(duì)肝癌預(yù)后的影響。(三)統(tǒng)計(jì)學(xué)分析1.dJ/dS2.0統(tǒng)計(jì)分析a)p和FDR計(jì)算:使用二項(xiàng)分布檢驗(yàn)計(jì)算出每個(gè)基因?qū)?yīng)的p值,同時(shí)用Benjamini-Hochberg 方法控制 FDR(false discovery rate);當(dāng)基因的dJ/dS1且FDR小于0.05時(shí),認(rèn)為是驅(qū)動(dòng)基因;b)GO功能分析:使用GOrilla進(jìn)行GO功能聚類分析,FDR小于0.05認(rèn)為有統(tǒng)計(jì)學(xué)意義。2.驅(qū)動(dòng)基因功能的統(tǒng)計(jì)分析a)KEGG功能分析:利用DAVID運(yùn)行KEGG功能分析,FDR0.1認(rèn)為有統(tǒng)計(jì)學(xué)意義;b)使用fisher確切概率法比較驅(qū)動(dòng)基因及通路在人種和性別間的分布;p0.05認(rèn)為有統(tǒng)計(jì)學(xué)意義;c)生存分析:通過Kaplan-Meier生存曲線比較驅(qū)動(dòng)基因?qū)︻A(yù)后的影響,使用log-rank檢驗(yàn)計(jì)算p值;用Cox比例風(fēng)險(xiǎn)回歸模型進(jìn)行多因素分析;p0.05認(rèn)為有統(tǒng)計(jì)學(xué)意義。研究結(jié)果(一)dJ/dS2.01.33種腫瘤的突變譜通過在剪接區(qū)域增加分析位點(diǎn)和拆分突變譜的方式來改進(jìn)dJ/dS后,開發(fā)dJ/dS2.0版本,將之應(yīng)用于TCGA33種腫瘤中可以得到更為精準(zhǔn)的突變譜。a)高頻突變類型CT是大多腫瘤的主要突變類型,其中CpGTpG的突變率最高,但在皮膚黑色素瘤中突變率最高的是CpCCpT和TpCTpT。b)腎癌亞型的突變特點(diǎn)腎嫌色細(xì)胞癌突變類型主要以CpGTpG為主,腎透明細(xì)胞癌以CCGCAG、CCGCTG和GCGGTG為主,而腎乳頭狀細(xì)胞癌在腎透明細(xì)胞癌突變類型的基礎(chǔ)上,還包括了 CCACAA和CCCCAC。2.驅(qū)動(dòng)基因除了腎上腺皮質(zhì)癌、膽管癌、FPPP、腎嫌色細(xì)胞癌、彌漫性大B細(xì)胞淋巴瘤、子宮癌肉瘤和睪丸生殖細(xì)胞瘤這7種腫瘤沒有鑒定出結(jié)果,dJ/dS2.0在26種鑒定出驅(qū)動(dòng)基因,值得注意的是子宮內(nèi)膜癌出現(xiàn)多達(dá)344個(gè)基因,我們懷疑TCGA數(shù)據(jù)可能有異;虿糠只蛟谧訉m內(nèi)膜癌中更容易發(fā)生剪接區(qū)域突變,造成dJ/dS2.0不敏感而導(dǎo)致過多假陽性,因此我們移除了子宮內(nèi)膜癌的鑒定結(jié)果,只用余下25種腫瘤的結(jié)果進(jìn)行后續(xù)的分析。a)25種腫瘤的驅(qū)動(dòng)基因dJ/dS2.0在25種實(shí)體瘤中總共鑒定出643個(gè)非冗余的腫瘤驅(qū)動(dòng)基因,除了73個(gè)被CGC注釋為驅(qū)動(dòng)基因外,另有570個(gè)(88.8%)是新預(yù)測(cè)出來的驅(qū)動(dòng)基因;b)GO功能分析將570個(gè)驅(qū)動(dòng)基因進(jìn)行GO聚類分析,結(jié)果顯示有很多基因聚集在與發(fā)展和維持多細(xì)胞性相關(guān)的 GO term 上(GO:0044243,multicellular organismal catabolic process,p=2.53E-12,FDR=1.52E-8)。(二)驅(qū)動(dòng)基因在肝癌中的功能分析1.肝癌的驅(qū)動(dòng)基因?yàn)榱烁娴胤治鲵?qū)動(dòng)基因的功能,我們結(jié)合了 TCGA和ICGC中肝癌的數(shù)據(jù)來增加樣本量,在應(yīng)用dJ/dS2.0的同時(shí),也使用了分別由我們實(shí)驗(yàn)室課題組開發(fā)的dT/dS和TCGA開發(fā)的MutSig2.0方法,三種方法共鑒定出89個(gè)驅(qū)動(dòng)基因,經(jīng)KEGG pathway分析發(fā)現(xiàn)這89個(gè)基因富集于10條與病毒感染或腫瘤相關(guān)的信號(hào)通路上;2.肝癌驅(qū)動(dòng)基因突變類型的特點(diǎn)對(duì)比發(fā)現(xiàn),肝癌各驅(qū)動(dòng)基因的突變類型構(gòu)成比差異較大,在突變頻率較高的CTNNB1、TP53和RB1基因中,非同義突變所占比超過95%,其中CTNNB1和TP53以錯(cuò)義突變?yōu)橹?而插入缺失、錯(cuò)義突變、剪接區(qū)域突變及無義突變共存于RB1中;3.人種和性別影響驅(qū)動(dòng)基因和通路突變的分布基因TP53和RB1及通路hsa05161和hsa05203在亞裔中更容易突變,男性中的CTNNB1、ALB、PIK3CA、BAP1基因和hsa05200通路發(fā)生率高于女性;4.生存分析經(jīng)單因素篩選和多因素分析,基因KCNB2(p=0.025),KCNJ12(p=0.015),RB1(p=0.038)和 TP53(p=0.01)及乙肝感染通路 hsa05161(p=0.006)若發(fā)生突變則患者中位生存時(shí)間縮短,死亡風(fēng)險(xiǎn)比增加。結(jié)論第一章:dJ/dS2.01.改進(jìn)dJ/dS算法,提高了準(zhǔn)確性;2.由dJ/dS2.0鑒定的驅(qū)動(dòng)基因參與多細(xì)胞性的發(fā)展和維持環(huán)節(jié);第二章:驅(qū)動(dòng)基因在肝癌中的功能分析1.肝癌患者的性別和人種會(huì)影響驅(qū)動(dòng)基因突變的分布;2.驅(qū)動(dòng)基因KCNB2、KCNJ12、RB1、TP53和乙肝感染通路hsa05161突變是肝癌預(yù)后的不良因素,可能是臨床上潛在的基因標(biāo)志物。
[Abstract]:Cancer driver genes (tumor driven gene genes) has always been a hot spot in oncology research. At present, a variety of tools based on tumor genomics have been developed, in which the dJ/dS method identified the new tumor driven gene.DJ/dS from the splice site of the exon (exon) and Chi Ko (intron) from different angles (J). Unction site, J) mutation, if the J site mutation, then the pre-mRNA splicing process failed, and then can not produce normal mature mRNA, resulting in the loss of gene function (loss of function), and finally induced cell cancerization. Based on this idea, the method uses the principle of the calculation of dN/dS of the legacy tool dN/dS, and uses Junction mutation and Junction. The ratio of ymous mutation (S) observation value (obs_JS) is divided by the ratio of expected values (exp_JS), that is, dJ/dS=obs_JS/exp_JS, if dJ/dS1, there is a positive selection effect; if dJ/dS1 believes that there is a purification selection effect; if dJ/dS=1 believes that there is no selective pressure. We think that the driving gene is positive in the carcinogenesis. Compared to other methods, D, D. J/dS better controls the background mutation rate (background mutation rate, BMR) and improves the sensitivity of the method. However, there are still two shortcomings: first, dJ/dS only calculates the mutation on the splice donor (GT) and splice acceptor (rate) when the J mutation is considered, and there is a study showing that the four loci are near the mutation. It also causes splicing failure, causing disease to occur, so it is more accurate to incorporate the area around the splice site into J; two, dJ/dS only considers 12 mutation types when calculating the mutation spectrum (mutation spectrum), but the base N (ATCG) that is reported to be adjacent to the mutation site may greatly affect the mutation, so 96 kinds of mutation spectrum are used. Type calculation is more scientific. Therefore, in this study, we improve the above two points of dJ/dS, develop the dJ/dS2.0 version, and combine the data of 33 solid tumors of the TCGA (The Cancer Genome Atlas) to reanalyze the tumor driving genes. It is very complicated that oncogene and tumor suppressor gene play an important regulatory role in the process of carcinogenesis. Many factors can affect the mutation of oncogene and tumor suppressor gene. There is a research report that human species and sex are important factors affecting gene mutation, and some gene mutations will make the tumor be worse after the tumor. We will discuss the model of liver cancer as a study model. Liver cancer is the sixth most common malignant tumor in the world, with a high mortality rate of third, more than 70 million new cases each year, and increasing year by year. Surgical resection is the most effective treatment for early liver cancer, but the recurrence rate of five years after surgery is more than 50%. in recent years, with the rapid development of sequencing technology. Great progress has been made in the study of hepatoma genomics, which provides new technical means for screening gene markers for clinical diagnosis and prognosis. This study is intended to be carried out in two aspects: (1) improving the dJ/dS method and identifying the tumor driven genes; (2) hepatocellular carcinoma as a research model, combined with the prediction results of dJ/ dS2.0, dT/dS and MutSig2.0, preliminary analysis The function of driving genes in liver cancer. Purpose 1. to improve the dJ/dS algorithm, to develop the dJ/dS2.0 version, and to apply it to the prediction of dJ/dS2.0 tumor driven genes; 2. to study the function of the driving genes in the liver cancer. Research method (1) the data of the improved 1.dJ/dS2. for the dJ/dS algorithm: This study included the data.2.dJ/ of 33 kinds of solid tumors of TCGA. DS2.0 calculation method a) calculation of mutation spectrum: the mutation spectrum of each tumor is calculated at four times of degenerate loci without the influence of selected pressure. At the same time, 96 mutation types are used to express the mutation spectrum, that is, the base of the mutation site, such as NCNNTN, N representing ATCG; b) J process, is calculated on the basis of the original dJ/dS method J 3 bases and 6 bases on the exons adjacent to the splice site, a total of 11 mutation sites, and a total of 11 mutation sites; c) S mutation calculation principle: integrating all the synonymous mutations on each gene; d) calculating the expected JS ratio (exp_JS): the expectation of each gene's J and S (expectation, exp) by the previous mutation spectrum, and then J, respectively, are used for J. The expectation value is compared with the expected value of the upper S, that is, exp_JS = exp_J/exp_S; E) to calculate the actual JS ratio (obs_JS): the observed values of J and S (observation, OBS) from the TCGA exons sequencing data are calculated, and then the ratio of the actual observed values is divided by the observed values of J. The ratio obtained dJ/dS ratio, dJ/dS obs_J S/exp_J S; (two) the function of the driving genes in the liver cancer 1. the source of liver cancer data: TCGA and ICGC; the identification of 2. driving genes and pathways: comprehensive dJ/dS2.0, dT/dS and MutSig2.0 three methods in the identification of liver cancer data, and using the obtained driving genes for pathway analysis (pathway analy) SIS): functional analysis of 3. driving genes: combined with the clinical data of liver cancer, analysis of the mutation difference between the driving genes and pathways in human and sex, and the effect on the prognosis of liver cancer. (three) statistical analysis of 1.dJ/dS2.0 statistical analysis a) P and FDR calculation: using two distribution tests to calculate the corresponding p value of each gene, and use Benjamini-Hochberg at the same time. The method controls FDR (false discovery rate); when the gene is dJ/dS1 and FDR is less than 0.05, it is considered to be the driving gene; b) GO functional analysis: GO function clustering analysis using GOrilla, FDR less than 0.05 Statistical significance; b) using the Fisher exact probability method to compare the distribution of driving genes and pathways between human and sex; P0.05 considered statistically significant; c) survival analysis: using the Kaplan-Meier survival curve to drive the gene to the prognosis of the gene, using the log-rank test to calculate the p value, and using the Cox proportional risk regression model for multifactor analysis; P 0.05 (0.05) the results (1) the mutation spectrum of the dJ/dS2.01.33 tumor is improved by increasing the analysis site and splitting the mutation spectrum in the splicing region, developing the dJ/dS2.0 version and applying it to the TCGA33 tumor to get a more accurate mutation spectrum.A) the high frequency mutation type CT is the majority of the tumors. In the case of mutation, the mutation rate of CpGTpG is the highest, but the highest mutation rate in the skin melanoma is CpCCpT and TpCTpT.b). The mutation of renal carcinoma subtypes is characterized mainly by CpGTpG, and the renal clear cell carcinoma is mainly CCGCAG, CCGCTG and GCGGTG, while the renal papillary cell carcinoma is in the renal clear cell carcinoma mutation type. On the basis of the CCACAA and CCCCAC.2. driving genes, 7 kinds of tumors, including adrenocortical cancer, cholangiocarcinoma, FPPP, renal chromophobe cell carcinoma, diffuse large B cell lymphoma, uterine carcinosarcoma and testicular germ cell tumor, were not identified, and dJ/dS2.0 was identified in 26 of the driving genes. It is worth noting that endometrial cancer appears much more. Up to 344 genes, we suspect that TCGA data may have abnormal or part of the gene in endometrial cancer more prone to splicing region mutation, resulting in dJ/dS2.0 insensitivity and lead to excessive false positive. Therefore, we remove the identification of endometrial cancer and use only the results of the remaining 25 tumors for subsequent analysis of.A) the driving of 25 kinds of tumors. The gene dJ/dS2.0 identified 643 non redundant tumor driven genes in 25 solid tumors. In addition to 73 CGC annotated as driving genes, another 570 (88.8%) was a newly predicted drive gene; b) GO functional analysis carried out GO clustering analysis of 570 driving genes. The results showed that many genes were aggregated in development and maintenance. Cytoplasmic related GO term (GO:0044243, multicellular organismal catabolic process, p=2.53E-12, FDR=1.52E-8). (two) functional analysis of the driving genes in liver cancer 1. the driving genes of the liver cancer in order to more comprehensively analyze the function of the driving genes, we combine the data of the liver cancer in TCGA and ICGC to increase the sample size, in the application of dJ/dS2. 0 at the same time, we also used the MutSig2.0 method developed by our lab group dT/dS and TCGA respectively. Three methods were used to identify 89 driving genes. The 89 genes were found to be enriched in 10 signal pathways related to virus infection or tumor by KEGG pathway analysis. The characteristics of the mutation types of the 2. liver cancer driving genes were compared. At present, the mutation types of liver cancer drive genes are different in proportion. In CTNNB1, TP53 and RB1 genes with higher mutation frequency, the proportion of non synonymous mutations is more than 95%, of which CTNNB1 and TP53 are mainly missense mutations, while insertion loss, missense mutation, splicing region mutation and nonsense mutation coexist in RB1; 3. and sex influence drivers Distribution genes TP53 and RB1 and pathway hsa05161 and hsa05203 are more likely to be mutated in Asian descent. The incidence of CTNNB1, ALB, PIK3CA, BAP1 and hsa05200 pathways in men is higher than that of women; 4. survival analysis, by single factor screening and multifactor analysis, gene KCNB2 (p=0.025), KCNJ12 (KCNJ12), etc., and If the hepatitis B infection pathway hsa05161 (p=0.006) mutation occurs, the median survival time of the patients is shortened and the mortality risk is increased. Conclusion the first chapter: dJ/dS2.01. improves the dJ/dS algorithm and improves the accuracy; 2. the driving genes identified by dJ/dS2.0 are involved in the development of multicellular and maintenance rings; and the second chapter: functional analysis of the driving gene in liver cancer 1. The sex and ethnicity of the patients with liver cancer may affect the distribution of the driving gene mutation; the 2. driven gene KCNB2, KCNJ12, RB1, TP53 and the hsa05161 mutation in the hepatitis B infection pathway are adverse factors for the prognosis of liver cancer, which may be a potentially clinical marker.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R735.7

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 歐陽軍;;基因與長壽[J];家庭中醫(yī)藥;2006年10期

2 文輝;人到底有多少個(gè)基因?[J];百科知識(shí);2003年11期

3 張麗華;侯振江;;p53基因在肺癌研究中的進(jìn)展[J];臨床肺科雜志;2006年01期

4 程鵬,童茂榮;p53基因在肺癌的治療及預(yù)后中的價(jià)值[J];江蘇醫(yī)藥;2000年03期

5 盧薇薇;仇容;;nm23基因的研究進(jìn)展[J];中國實(shí)用醫(yī)藥;2008年30期

6 張愛菊;P~(53)基因與人類腫瘤[J];醫(yī)學(xué)綜述;1998年08期

7 熊建新,吳子忠;p53基因與肺癌[J];中國煤炭工業(yè)醫(yī)學(xué)雜志;1999年01期

8 姚松朝;李輝;;p53基因與肺癌[J];海軍醫(yī)學(xué);1995年01期

9 王武;盧輝山;;KAI1基因與消化道惡性腫瘤關(guān)系的研究現(xiàn)狀[J];醫(yī)學(xué)綜述;2007年07期

10 馬秀華,李翠萍,王建偉;Rb與P~(16)基因在肺癌組織中的表達(dá)及其意義[J];山東醫(yī)藥;1999年19期

相關(guān)會(huì)議論文 前10條

1 張蕊;Liang Zhao;Tom Gonda;;慢病毒介導(dǎo)的多西環(huán)素可誘導(dǎo)式短發(fā)夾RNA抑制K562細(xì)胞系e-myb基因的表達(dá)[A];中華醫(yī)學(xué)會(huì)第十四次全國兒科學(xué)術(shù)會(huì)議論文匯編[C];2006年

2 高艷紅;岳文;秦立鵬;張鵬;陳琳;裴雪濤;;人Spindlin1基因的功能初探[A];第九屆全國實(shí)驗(yàn)血液學(xué)會(huì)議論文摘要匯編[C];2003年

3 王衛(wèi)東;陳正堂;李德志;;腫瘤治療新策略——基因—放射治療:原理、現(xiàn)狀及展望[A];中華醫(yī)學(xué)會(huì)放射腫瘤治療學(xué)分會(huì)六屆二次暨中國抗癌協(xié)會(huì)腫瘤放療專業(yè)委員會(huì)二屆二次學(xué)術(shù)會(huì)議論文集[C];2009年

4 王今達(dá);;21世紀(jì)生命科學(xué)飛躍發(fā)展的基礎(chǔ)——基因工程[A];2000年全國危重病急救醫(yī)學(xué)學(xué)術(shù)會(huì)議論文集[C];2000年

5 李寶健;許新萍;馮道榮;范欽;朱華晨;林莉;;論改良生物體遺傳性的多基因策略——Ⅰ.多基因改良策略將成為未來基因工程的主流方向[A];中國生物工程學(xué)會(huì)第三次全國會(huì)員代表大會(huì)暨學(xué)術(shù)討論會(huì)論文摘要集[C];2001年

6 王根軒;;基因表達(dá)格局與植物數(shù)量性狀的控制[A];全國植物分子生物學(xué)與生物技術(shù)學(xué)術(shù)研討會(huì)論文集[C];2000年

7 彭志宏;黃柏勝;文芳;韓仰;劉發(fā)益;鄔力祥;;Mettl9基因?qū)251細(xì)胞生長的影響及機(jī)制研究[A];湖南省生理科學(xué)會(huì)2013年度學(xué)術(shù)年會(huì)論文摘要匯編[C];2013年

8 付凌潔;張淑蘭;;RASSF1A基因在卵巢癌中的表達(dá)及其對(duì)增殖、凋亡的影響[A];東北三省第四屆婦產(chǎn)科學(xué)術(shù)會(huì)議論文匯編[C];2008年

9 錢偉;何云剛;賴建華;舒坤賢;譚德勇;余敏;;p53基因?qū)ybbp1a(p160)基因的正調(diào)控作用研究[A];中國生物化學(xué)與分子生物學(xué)會(huì)第八屆會(huì)員代表大會(huì)暨全國學(xué)術(shù)會(huì)議論文摘要集[C];2001年

10 薛世偉;林艷麗;熊福銀;吳曉潔;周艷榮;郭虹敏;陳紅星;陳樹林;;人Nanog基因的克隆及其在CHO-K1細(xì)胞中的表達(dá)[A];中國畜牧獸醫(yī)學(xué)會(huì)動(dòng)物解剖學(xué)及組織胚胎學(xué)分會(huì)第十六次學(xué)術(shù)研討會(huì)論文集[C];2010年

相關(guān)重要報(bào)紙文章 前10條

1 全國政協(xié)委員 民盟中央委員 曹義孫;立法規(guī)范基因檢測(cè)[N];團(tuán)結(jié)報(bào);2010年

2 呂回;鳥兒會(huì)唱人會(huì)說 只緣基因太相似[N];廣東科技報(bào);2004年

3 ;認(rèn)識(shí)我們的基因[N];科技日?qǐng)?bào);2003年

4 本報(bào)記者 張麗;基因可以透視明天嗎[N];中國消費(fèi)者報(bào);2001年

5 姜海;科學(xué)家發(fā)現(xiàn)新的致盲基因[N];科技日?qǐng)?bào);2007年

6 徐陽;基因與長壽[N];光明日?qǐng)?bào);2000年

7 記者 林小春 任海軍;美國研究表明懶或許源于基因[N];新華每日電訊;2013年

8 盧菁;怕胖可就是管不住嘴,原是基因作怪[N];新華每日電訊;2008年

9 本報(bào)記者 盧雁妮;“從對(duì)生命及疾病本源的認(rèn)識(shí)到基因科技造福人類”講座開講[N];黔西南日?qǐng)?bào);2014年

10 張小軍;美發(fā)現(xiàn)老鼠性別新基因[N];醫(yī)藥經(jīng)濟(jì)報(bào);2001年

相關(guān)博士學(xué)位論文 前10條

1 劉芳;RB94基因在非小細(xì)胞肺癌治療中的作用及機(jī)制研究[D];山東大學(xué);2015年

2 王宗丹;遠(yuǎn)程調(diào)控元件mbr選擇性協(xié)調(diào)BCL2和NOXA基因轉(zhuǎn)錄活性的機(jī)制研究[D];南京醫(yī)科大學(xué);2013年

3 王曉樂;水稻脆鞘基因BSH1的圖位克隆與功能分析[D];中國農(nóng)業(yè)科學(xué)院;2015年

4 劉莉莉;奶牛產(chǎn)奶性狀候選功能基因VPS28的功能驗(yàn)證[D];中國農(nóng)業(yè)大學(xué);2016年

5 王義濤;ACER2是一個(gè)新的通過促ROS產(chǎn)生而誘發(fā)自噬與凋亡的p53靶基因[D];重慶醫(yī)科大學(xué);2017年

6 廖傳文;WTX基因調(diào)控肝癌細(xì)胞增殖及侵襲轉(zhuǎn)移的機(jī)制研究[D];南昌大學(xué);2016年

7 金旭;心血管內(nèi)靶向定位基因遞送體系—載基因支架的實(shí)驗(yàn)研究[D];中國協(xié)和醫(yī)科大學(xué);2006年

8 楊春霞;生活方式和基因多態(tài)與食道癌的關(guān)系[D];四川大學(xué);2005年

9 吳漢林;人NIT1基因cDNA的克隆、原核表達(dá)及抗體制備[D];四川大學(xué);2005年

10 何勇;p73基因在人肺癌中的表達(dá)及對(duì)其細(xì)胞生物學(xué)行為的影響[D];第三軍醫(yī)大學(xué);2004年

相關(guān)碩士學(xué)位論文 前10條

1 鄧小冬;ERCC1、XPF和XPG基因在法醫(yī)學(xué)年齡推斷中的初步研究[D];川北醫(yī)學(xué)院;2015年

2 張潤賢;論基因權(quán)的私權(quán)屬性及民法保護(hù)[D];東北林業(yè)大學(xué);2015年

3 劉偉;家蠶受體酪氨酸激酶樣的孤獨(dú)受體Ror2基因功能的研究[D];蘇州大學(xué);2015年

4 衛(wèi)姣;銅離子感應(yīng)基因MAC1轉(zhuǎn)錄機(jī)理的研究[D];鄭州大學(xué);2015年

5 楊鎮(zhèn)宇;禁食—恢復(fù)投喂條件下鰱神經(jīng)肽Y及三個(gè)瘦素相關(guān)基因的表達(dá)分析[D];華中農(nóng)業(yè)大學(xué);2015年

6 周彥寬;Fam49b基因在人類細(xì)胞系中的定向敲除及其功能研究[D];浙江大學(xué);2015年

7 劉如錦;病毒巨噬細(xì)胞炎癥蛋白Ⅱ調(diào)控抗HIV-1基因APOBEC3G表達(dá)機(jī)制的初步探討[D];杭州師范大學(xué);2015年

8 羅萌萌;HEPIS基因功能的初步研究[D];華北理工大學(xué);2015年

9 梁一丹;應(yīng)用雙熒光素酶報(bào)告載體研究上游開放閱讀框的突變對(duì)靶基因的影響[D];南方醫(yī)科大學(xué);2015年

10 李霞;miRNA靶基因優(yōu)選及網(wǎng)絡(luò)分析[D];天津醫(yī)科大學(xué);2015年

,

本文編號(hào):2167473

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2167473.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶91732***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com