花生鐵螯合酶1基因的克隆與及其在鹽脅迫下的功能分析
[Abstract]:Arachis hypogaea L is one of the most important oil crops in our country and in the world. Because of its rich oil and protein, it has high nutritional value and economic value. The aggravation of industrial pollution and the improper use of agricultural irrigation measures and chemical fertilizer have caused the increase of the area of secondary saline and alkali land. The crop yield and quality of peanuts are seriously affected by the continued threat of peanut planting areas. Therefore, how to ensure stable yield, high yield and high quality of peanuts has become a major goal and technical problem for breeding. In order to achieve this goal and accelerate the improvement process of peanut varieties, researchers have gradually shifted the research direction to the molecular mechanism of salt tolerance. The study is aimed at genetic improvement of existing varieties by genetic engineering techniques and selecting new peanut varieties with salt tolerance to provide practical application for improving the yield and quality of peanut. Iron chelating enzyme catalyzes the synthesis of heme, which provides an auxiliary basis for the complex in the respiratory chain and the peroxidase. Hemoglobin is likely to be a signaling molecule to communicate plastids and nuclei and participate in drought stress response. This lesson is intended to clone peanut iron chelase 1 gene and study its function under salt stress. We use the Arabidopsis iron chelase 1 gene (AtFC1, GI: 145358447) as a probe to compare the peanut EST database in the search NCBI Two homologous EST sequences were obtained and the primers were designed according to the sequence after the splicing. The peanut leaves treated with salt stress were used as the test materials. The peanut iron chelating enzyme 1 gene was cloned by RT-PCR and RACE technology, and the bioinformatics analysis and function prediction were carried out. The gene was transiently expressed in the Arabidopsis protoplast. The fusion gene of fluorescent protein (GFP) determines its location in the cell and studies its function in salt stress response by overexpressing the gene in tobacco. The results are as follows: (1) a complete cDNA sequence of peanut iron chelating enzyme was cloned from the peanut leaves treated with salt stress, named AhFC1, which has been registered in Genbank KU560625. the full length of cDNA sequence is 1965 BP, the 5 'end non translation region is 157 BP, the open reading frame length is 1449 BP, the 3' end non translation region is 359 BP, the encoded protein contains 482 amino acids. (2) a variety of methods are used to predict the encoding protein of the protein. It is found that AhFC1 egg white has a highly conserved iron chelase N end and C terminal domain. There are several enzyme active sites on the two domains, and there is a transmembrane region at its C end, belonging to the II superfamily of the chelating enzyme, which is not dependent on ATP, and in the chloroplast compartment. In evolution, the relationship between the AhFC1 protein and the iron chelating enzyme of cucumber is closest. (3) the expression model analysis shows that the drought stress treatment can induce AhFC quickly. The expression of L increased, and then reached the maximum after 6h, and then began to decrease slowly. Compared with drought stress treatment, the AhFCl induced by salt stress was slowly rising, and the time needed to reach the peak was also relatively delayed, and the peak value reached to 12h, and then began to decline. (4) the germination rate of transgenic tobacco was significantly higher than that in the wild under salt stress. The heme of transgenic tobacco and wild type tobacco were decreased, but the content of heme of transgenic tobacco was significantly higher than that of wild type. The ROS content of transgenic tobacco leaves, MDA, electrical conductivity were significantly lower than that of wild type plants, while the activity of CAT, APX and other peroxidase activities in the heme supplemented group Although the SOD activity in transgenic tobacco and wild type tobacco leaves increased by salt stress, there was no significant difference between the two. The above results showed that overexpression of AhFCl gene increased the heme content and ROS scavenging ability of transgenic tobacco and alleviated the oxidative stress caused by salt. It is forced to enhance the salt tolerance of transgenic tobacco.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:S565.2;Q943.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;抗霉花生品種[J];浙江科技簡報(bào);1983年02期
2 梁麗琨;由翠榮;林榮雙;鄭秋生;肖顯華;;花生基因工程[J];生物學(xué)通報(bào);2005年10期
3 周錄英;李向東;湯笑;林英杰;李宗奉;李寶龍;;氮、磷、鉀肥配施對花生生理特性及產(chǎn)量、品質(zhì)的影響[J];生態(tài)學(xué)報(bào);2008年06期
4 陳高;徐鳳花;單世華;張廷婷;孫兵;李春娟;閆彩霞;;花生抗病基因分離克隆研究進(jìn)展[J];生物技術(shù)通訊;2009年02期
5 明德南;錢紅;;花生高產(chǎn)不施氮栽培初獲成功[J];今日科技;1989年03期
6 于惠英,曾宗德;花生增產(chǎn)劑的大田應(yīng)用及其對花生形態(tài)與生理的影響[J];植物學(xué)通報(bào);1991年04期
7 李思經(jīng);;美國花生品種基因轉(zhuǎn)移成功[J];生物技術(shù)通報(bào);1993年01期
8 李殿慶;昌吉市花生種植分析[J];新疆氣象;1995年02期
9 姜廣仁;;超高產(chǎn)多粒花生——駝峰大花生[J];科技致富向?qū)?2005年01期
10 何永梅;;花生帶殼播種好[J];科普天地(資訊版);2012年04期
相關(guān)會議論文 前10條
1 張廷婷;單世華;閆彩霞;李春娟;萬書波;;花生抗黃曲霉基因的分離與初步鑒定[A];2009年中國作物學(xué)會學(xué)術(shù)年會論文摘要集[C];2009年
2 張廷婷;閆彩霞;鄭奕雄;單世華;李春娟;劉宇;周西;;花生抗黃曲霉相關(guān)基因的克隆與表達(dá)[A];中國作物學(xué)會50周年慶祝會暨2011年學(xué)術(shù)年會論文集[C];2011年
3 唐月異;王傳堂;;花生低溫脅迫下抑制差減雜交文庫的構(gòu)建與分析[A];中國作物學(xué)會50周年慶祝會暨2011年學(xué)術(shù)年會論文集[C];2011年
4 楊莎;郭峰;王芳;孟靜靜;萬書波;李新國;;外源施鈣減輕高溫強(qiáng)光脅迫下花生葉片光合作用的光抑制[A];2012年中國作物學(xué)會學(xué)術(shù)年會論文摘要集[C];2012年
5 楊莎;郭峰;王芳;孟靜靜;萬書波;李新國;;外源施鈣減輕高溫強(qiáng)光脅迫下花生葉片光合作用的光抑制[A];山東植物生理學(xué)會第七次代表大會暨植物生物學(xué)與現(xiàn)代農(nóng)業(yè)研討會論文集[C];2012年
6 沈一;劉永惠;陳志德;;耐旱花生資源篩選與轉(zhuǎn)錄組研究[A];2013全國植物生物學(xué)大會論文集[C];2013年
7 莊東紅;周敏;;谷氨酰胺和硝酸銀對花生幼葉芽再生的促進(jìn)作用[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對策(下冊)[C];2002年
8 潘麗娟;楊慶利;禹山林;;花生△~(12)脂肪酸脫氫酶與高油酸性狀的關(guān)系[A];全國植物分子育種研討會摘要集[C];2009年
9 遲曉元;楊慶利;和亞男;任增凱;禹山林;;花生幼苗全長cDNA文庫的構(gòu)建與分析[A];全國植物分子育種研討會摘要集[C];2009年
10 張富全;張鵬;;地膜花生高產(chǎn)栽培技術(shù)[A];河南省植保學(xué)會第九次、河南省昆蟲學(xué)會第八次、河南省植病學(xué)會第三次會員代表大會暨學(xué)術(shù)討論會論文集[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 ;不含過敏原的花生品種被找到[N];今日信息報(bào);2003年
2 本報(bào)記者 劉旭;花生產(chǎn)業(yè)藍(lán)圖還待重筆描繪[N];國際商報(bào);2007年
3 定州市農(nóng)業(yè)信息中心 王虎;花生市場逐漸升溫[N];河北科技報(bào);2006年
4 定州市農(nóng)業(yè)信息中心 王虎;定州花生漲價(jià) 直接原因有仨[N];河北農(nóng)民報(bào);2006年
5 任江華 祝學(xué)慶;花生雖小市場大[N];糧油市場報(bào);2006年
6 陳四化邋王化遠(yuǎn);正陽小花生做成大文章[N];農(nóng)民日報(bào);2007年
7 王化遠(yuǎn);正陽:花生大縣唱紅花生大戲[N];駐馬店日報(bào);2007年
8 經(jīng)參;品種老化制約花生增產(chǎn),,可否實(shí)施良種補(bǔ)貼[N];糧油市場報(bào);2008年
9 本報(bào)記者 蘇萬明;四十余年風(fēng)雨不變 品種老化制約花生增產(chǎn)[N];經(jīng)濟(jì)參考報(bào);2008年
10 范杰;“花生王國”的龍型經(jīng)濟(jì)模式[N];中國特產(chǎn)報(bào);2008年
相關(guān)博士學(xué)位論文 前10條
1 閆彩霞;栽培花生遺傳多樣性及產(chǎn)量品質(zhì)性狀的關(guān)聯(lián)分析[D];山東農(nóng)業(yè)大學(xué);2015年
2 于淼;花生發(fā)芽過程中白藜蘆醇富集技術(shù)與機(jī)理研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
3 許濤;彈齒式花生撿拾裝置設(shè)計(jì)及試驗(yàn)研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
4 夏友霖;花生晚斑病抗性遺傳特性研究[D];四川農(nóng)業(yè)大學(xué);2014年
5 關(guān)萌;全喂入花生摘果試驗(yàn)裝置與摘果機(jī)關(guān)鍵部件研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
6 陳團(tuán)偉;福建主栽花生品質(zhì)分析及花生加工新技術(shù)的研究[D];福建農(nóng)林大學(xué);2008年
7 禹山林;花生脂肪酸代謝關(guān)鍵酶基因的克隆與表達(dá)分析[D];南京農(nóng)業(yè)大學(xué);2008年
8 黃玉茜;花生連作障礙的效應(yīng)及其作用機(jī)理研究[D];沈陽農(nóng)業(yè)大學(xué);2011年
9 王麗;蛋白用花生加工特性與品質(zhì)評價(jià)技術(shù)研究[D];中國農(nóng)業(yè)科學(xué)院;2012年
10 張佳蕾;不同品質(zhì)類型花生品質(zhì)形成差異的機(jī)理與調(diào)控[D];山東農(nóng)業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 張鵬;連續(xù)立式花生干燥器的研制[D];江西農(nóng)業(yè)大學(xué);2015年
2 韓全輝;木薯/花生不同間作模式的效應(yīng)比較[D];海南大學(xué);2014年
3 李文姍;山東省花生種植成本收益分析[D];山東農(nóng)業(yè)大學(xué);2015年
4 朱敦瑋;花生對黃曲霉抗性的生理特性研究[D];福建農(nóng)林大學(xué);2015年
5 李偉烽;清流縣賴坊花生產(chǎn)業(yè)化及發(fā)展策略研究[D];福建農(nóng)林大學(xué);2015年
6 吳海龍;山東花生根瘤菌遺傳多樣性及高效共生固氮菌株的篩選[D];中國科學(xué)院煙臺海岸帶研究所;2016年
7 張艷華;遼寧省花生根瘤菌的系統(tǒng)發(fā)育及應(yīng)用研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
8 劉瑋;花生AhbHLH1參與調(diào)控FAD2基因在種子中表達(dá)的研究[D];山東大學(xué);2016年
9 閆建美;花生鐵螯合酶1基因的克隆與及其在鹽脅迫下的功能分析[D];山東大學(xué);2016年
10 回子健;三滾式小區(qū)育種花生脫殼裝置試驗(yàn)研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
本文編號:2156939
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2156939.html