PB、SB和Tol2轉(zhuǎn)座子在斑馬魚中的基因轉(zhuǎn)移和基因捕獲效率比較研究
[Abstract]:Transposon (Tn), which is widely distributed in the biological community, is a DNA sequence that can be replicated and transferred autonomously in the genome. Transposon can effectively mediate gene transfer and have high application value in the research of transgenic and gene capture. Many highly active DNA transposons, such as PiggyBac (PB) transposon S, have been isolated. Leeping beauty (SB) transposons and Tol2 transposons have been widely used in the studies of transgenic and gene capture in zebrafish, mice, and nematodes, but the transposable characteristics of PB, SB and Tol2 transposons in zebrafish are still lacking in depth. The difference in gene transfer and gene capture efficiency of three DNA transposons of PB, SB and Tol2 in zebrafish can provide reference for the study and application of transposon in related fields. This experiment mainly includes: 1, the difference in gene transfer efficiency of PB, SB and Tol2 transposons, which will contain beta-actin promoter (named FAG) and green fluorescence of carp fish (named FAG) The protein reporter gene (Green Fluorecent Protein, GFP) expression box (FAG-GFP) was cloned into the PB, SB, Tol2 transposon framework and constructed into pPB-FAG-GFP, pSB-FAG-GFP, and pTo12-FAG-GFP transgenic carriers. Then, the 3 vectors were compared with SB, respectively, and transposable enzymes, respectively. The optimum injection mass ratio of 3 transposons and transposes was obtained by injection of 100ng in zebrafish embryos. SB and PB were 20ng:50ng, Tol2 was 20ng:30ng. and zebrafish embryos were injected with the optimum injection ratio. The GFP positive rate of the FO generation embryos of zebrafish detected in 48hpf and 120hpf, respectively, showed that 48hpf and 120hpf detected zebrafish embryos were found. In the fetus, the positive GFP of Tol2 were 68% and 68% (N=872), higher than PB (66% and 68%, N=885) and SB (64% and 65%, N=897), but the three were not significantly different (P0.05), and the FO generation GFP positive individuals were fed to the wild type and obtained the F1 generation. In group 17.86% (NF0=212) and 13.41% (NF0=199).2 of group SB, the enhancers' capture efficiency of PB, SB and Tol2 transposons was compared. The expression boxes (Krt4-GFP) containing the basic promoter of the zebrafish krt4 gene and the green fluorescent protein reporter gene (GFP) were cloned into 3 transposon frames, respectively. Krt4-GFP enhancer capture carrier. The 3 vectors were injected with SB, PB and Tol2 transposes mRNA respectively, and the zebrafish embryos were injected in the optimum proportion. The GFP positive rate of zebrafish F0 generation embryos was detected in 48hpf and 120hpf respectively. The results showed that the capture efficiency of the Tol2 group enhancers was the highest, and the 48hpf and 120hpf were 90.45% and 92.71% respectively. Significantly higher than group PB (83.18% and 83.32%, N=1276), group Tol2 was higher than SB group (88.64%, N=1378), but the difference was not significant (P0.05). At 120hpf, it was significantly higher than group SB (88.87%, N=1378) (P0.05). 55.56% (NF0=165) was higher than that of group PB (NF0=149) and group SB 38.36% (NF0=151). The distribution analysis of F1 generation zebrafish expression pattern showed that To12 could produce the most individual expression patterns, and PB could produce more expression patterns, SB tend to be.3, to compare the internal ribosome insertion site (Internal Ribosome). The effect of Site, IRES) on the gene capture efficiency mediated by transposon, the IRES element was inserted into the downstream of the PolyA capture component of the pTo12-RG-Trap gene capture carrier and constructed into a pTo12-GTrap. with the pTo12-RG-Trap gene capture carrier without IRES elements as the control, and the two carriers of pTo12-GTrap and pTo12-RG-Trap and Tol2 transposin mRNA were taken respectively. The positive rates of GFP in zebrafish embryos were detected by injecting zebrafish embryos at 48hpf and 120hpf respectively. The results showed that the positive rates of GFP in pTo12-GTrap group were 74.93% and 73.91% (N=986) in 48hpf and 120hpf, respectively, which were significantly higher than those of the pTo12-RG-Trap group (41.86% and 41.04%, N=853). The differences in gene capture efficiency of PB, SB and Tol2 transposons were compared. Based on the construction of pTo12-GTrap, Tol2 frames were replaced with PB and SB transposon frames respectively, and pPB-GTrap and pSB-GTrap. were constructed into 3 carriers with SB, PB and Tol2 transposes respectively. The GFP positive rate of the fetus showed that the gene capture efficiency of the Tol2 group was the highest (74.93% and 73.91%, N=986), which was significantly higher than the SB group (66.07% and 64.02%, N=1025) and PB group (54.23% and 53.26%, N=976), and the difference between SB and PB also reached a significant level (P0.05). Hadron capture efficiency, gene capture efficiency and reproductive system transfer efficiency are the highest. IRES components can enhance transposon mediated gene capture efficiency, but in the enhancers capture study, although Tol2 transposons can obtain more enhancers capture individuals, and PB can obtain more expression patterns, may be in the enhancer capture study. Higher application value.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:Q78
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陸德如;細(xì)菌轉(zhuǎn)座子及其在分子遺傳學(xué)中的應(yīng)用[J];微生物學(xué)免疫學(xué)譯刊;1984年01期
2 全登莊;可移動(dòng)的遺傳因子轉(zhuǎn)座子及其效應(yīng)[J];西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1985年04期
3 傅榮昭,,李文彬,孫勇如;植物轉(zhuǎn)座子在基因工程應(yīng)用上的研究進(jìn)展[J];生物工程進(jìn)展;1994年05期
4 李鳳玲,趙毓橘;植物轉(zhuǎn)座子[J];植物生理學(xué)通訊;2000年05期
5 何承忠,陳寶昆,江濤,張志毅,李善文;植物轉(zhuǎn)座子的研究與應(yīng)用[J];西南農(nóng)業(yè)學(xué)報(bào);2004年03期
6 王瑞白,闞飆;轉(zhuǎn)座子插入位點(diǎn)的鑒定方法[J];生物技術(shù)通訊;2005年03期
7 高東迎;何冰;孫立華;;水稻轉(zhuǎn)座子研究進(jìn)展[J];植物學(xué)通報(bào);2007年05期
8 韓民錦;李雪;張澤;;轉(zhuǎn)座子顯示技術(shù)及其在家蠶遺傳進(jìn)化研究中的應(yīng)用展望[J];蠶學(xué)通訊;2008年04期
9 張博;陳兵;張青文;康樂;;昆蟲的轉(zhuǎn)座子及其功能[J];昆蟲知識(shí);2009年02期
10 田海霞;;轉(zhuǎn)座子在基因組和基因進(jìn)化方面的研究進(jìn)展[J];安徽農(nóng)業(yè)科學(xué);2011年20期
相關(guān)會(huì)議論文 前10條
1 高才華;肖美麗;任小東;Alice Hayward;殷家明;付東輝;李加納;;真核生物基因組中嵌合轉(zhuǎn)座子的特征分析和功能注釋[A];中國遺傳學(xué)會(huì)第九次全國會(huì)員代表大會(huì)暨學(xué)術(shù)研討會(huì)論文摘要匯編(2009-2013)[C];2013年
2 嚴(yán)冰;曾慶韜;錢遠(yuǎn)槐;;黑腹果蠅黑條體突變體中轉(zhuǎn)座子分布的多樣性研究[A];中國動(dòng)物科學(xué)研究——中國動(dòng)物學(xué)會(huì)第十四屆會(huì)員代表大會(huì)及中國動(dòng)物學(xué)會(huì)65周年年會(huì)論文集[C];1999年
3 張?jiān)品?;小麥中轉(zhuǎn)座子存在的可能性初探[A];中國細(xì)胞生物學(xué)學(xué)會(huì)第五次會(huì)議論文摘要匯編[C];1992年
4 曲志才;姜曰水;;山東部分地區(qū)灰飛虱mariner類轉(zhuǎn)座子研究[A];中國遺傳學(xué)會(huì)第八次代表大會(huì)暨學(xué)術(shù)討論會(huì)論文摘要匯編(2004-2008)[C];2008年
5 周祥;白林泉;鄧子新;;井岡霉素產(chǎn)生菌的全基因組轉(zhuǎn)座子突變[A];2008年中國微生物學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2008年
6 逄曉陽;李晶;劉國文;王哲;;利用轉(zhuǎn)座子誘變構(gòu)建反芻月形單胞菌乙酸生成關(guān)鍵酶基因缺失工程菌[A];中國畜牧獸醫(yī)學(xué)會(huì)2006學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2006年
7 瞿婷婷;俞云松;魏澤慶;陳亞崗;李蘭娟;;萬古霉素耐藥腸球菌耐藥轉(zhuǎn)座子結(jié)構(gòu)及MLST分型[A];2007年浙江省醫(yī)學(xué)病毒學(xué)、醫(yī)學(xué)微生物與免疫學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2007年
8 何澤;曹廣力;薛仁宇;陳淼;陳文柱;王崇龍;鄭小堅(jiān);沈衛(wèi)德;貢成良;;用piggyBAC轉(zhuǎn)座子進(jìn)行家蠶轉(zhuǎn)hGM-CSF基因研究[A];中國蠶學(xué)會(huì)第四屆青年學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2004年
9 鐘仰進(jìn);楊婉瑩;曹陽;黃亞東;溫碩洋;勞海華;陳維春;;家蠶K1.4轉(zhuǎn)座子的拷貝多態(tài)性及K1.4主拷貝的序列特征研究[A];中國的遺傳學(xué)研究——中國遺傳學(xué)會(huì)第七次代表大會(huì)暨學(xué)術(shù)討論會(huì)論文摘要匯編[C];2003年
10 程洛單;鄒曙明;田玉梅;杜雪地;;金魚hAT家族Tgf2轉(zhuǎn)座子在斑馬魚胚胎中的自我剪切[A];2012年中國水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2012年
相關(guān)重要報(bào)紙文章 前3條
1 馮衛(wèi)東;轉(zhuǎn)座子榮居自然界最豐富基因榜首位[N];科技日?qǐng)?bào);2010年
2 本報(bào)記者 馮衛(wèi)東;遺傳基因中的“侵略者”[N];科技日?qǐng)?bào);2008年
3 樸淑瑜;科學(xué)家找到大麥白粉病“元兇”[N];科技日?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 葉露鵬;高效家蠶絲腺生物反應(yīng)器的關(guān)鍵因素分析[D];浙江大學(xué);2015年
2 宋成義;不同DNA轉(zhuǎn)座子在哺乳動(dòng)物細(xì)胞和胚胎中轉(zhuǎn)座活性研究及新轉(zhuǎn)座子的挖掘[D];中國農(nóng)業(yè)科學(xué)院;2014年
3 覃成;基于栽培辣椒和野生辣椒的全基因組測序揭示辣椒屬的馴化與特異性[D];四川農(nóng)業(yè)大學(xué);2014年
4 劉東;多倍體魚轉(zhuǎn)座子的遺傳變異和雌核發(fā)育魚性腺發(fā)育的分子生物學(xué)研究[D];湖南師范大學(xué);2009年
5 張化浩;家蠶基因組中轉(zhuǎn)座子的水平轉(zhuǎn)移[D];重慶大學(xué);2014年
6 陳勇;全基因組中網(wǎng)絡(luò)缺失基因和微型轉(zhuǎn)座子的發(fā)現(xiàn)及研究[D];山東大學(xué);2008年
7 馬峇;桑樹全基因組轉(zhuǎn)座子的鑒定及特征分析[D];西南大學(xué);2014年
8 丁f;piggyBac轉(zhuǎn)座系統(tǒng)[D];復(fù)旦大學(xué);2007年
9 王娜;基于piggyBac轉(zhuǎn)座子的家蠶定向遺傳轉(zhuǎn)化研究[D];浙江大學(xué);2010年
10 吳敏;鱗翅目昆蟲中piggyBac轉(zhuǎn)座子研究[D];南京農(nóng)業(yè)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 楊晶晶;組織培養(yǎng)誘導(dǎo)下水稻met1-2突變體反轉(zhuǎn)座子Tos17活性與組蛋白修飾關(guān)系研究[D];東北師范大學(xué);2015年
2 魏彬;基因組重測序作物的新轉(zhuǎn)座子鑒定及特征分析[D];四川農(nóng)業(yè)大學(xué);2014年
3 陳楚潤;基于基因組重測序的玉米溫?zé)釒ё越幌缔D(zhuǎn)座子特征分析[D];四川農(nóng)業(yè)大學(xué);2015年
4 王菁菁;煙草基因組一類微小倒置重復(fù)轉(zhuǎn)座元件(MITE)的轉(zhuǎn)座活性及真應(yīng)用[D];浙江大學(xué);2016年
5 韓雪;化膿隱秘桿菌轉(zhuǎn)座子分布與耐藥相關(guān)性及木犀草素對(duì)轉(zhuǎn)座子tnpA影響的研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
6 許海丹;長期繼代的柑橘愈傷組織中轉(zhuǎn)座子激活研究[D];華中農(nóng)業(yè)大學(xué);2016年
7 沈丹;斑馬魚活性Tc1轉(zhuǎn)座子的挖掘及驗(yàn)證[D];揚(yáng)州大學(xué);2016年
8 錢躍;環(huán)境因子對(duì)斑馬魚轉(zhuǎn)座子活性的影響[D];揚(yáng)州大學(xué);2016年
9 薛松磊;PB、SB和Tol2轉(zhuǎn)座子在斑馬魚中的基因轉(zhuǎn)移和基因捕獲效率比較研究[D];揚(yáng)州大學(xué);2016年
10 郭雪竹;棉鈴蟲非自主性Helitron轉(zhuǎn)座子HaLep1的鑒定與水平轉(zhuǎn)移研究[D];揚(yáng)州大學(xué);2016年
本文編號(hào):2155021
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/2155021.html