自然發(fā)酵酸馬奶細菌多樣性及其基因動態(tài)變化研究
本文選題:酸馬奶 + PacBio。 參考:《內蒙古農(nóng)業(yè)大學》2017年博士論文
【摘要】:作為一種發(fā)酵乳飲料,酸馬奶因具有豐富的營養(yǎng)成分和重要的經(jīng)濟價值,而深受中亞和東歐人喜愛。雖然酸馬奶具有獨特的微生物群落結構,但目前對其核心菌群及微生物群落動態(tài)變化和功能基因研究不夠深入。本研究首先采用PacBio SMRT測序技術在分類學地位"種"水平上對其核心細菌類群進行了甄別;繼而以5個牧民家庭為采樣點,分不同時間點在酸馬奶制作過程中進行了樣品的動態(tài)采集,利用宏基因組策略對酸馬奶中細菌微生物多樣性和功能基因動態(tài)變化進行了研究。通過本研究的實施可以全面、深入了解微生物群落結構動態(tài)變化對酸馬奶品質形成的功能和相互作用機制,為酸馬奶的品質改良和工業(yè)化生產(chǎn)提供原始數(shù)據(jù)和理論指導。主要研究結論如下:(1)酸馬奶的核心細菌類群主要由隸屬于Proteobacteria和Firmicutes 2個細菌門的 Lactobacillus helveticus、Lactobacillus kefiranofaciens、Lactobacillus gallinarum 和 Acetobater pasteurianus4個細菌種組成。納入本研究的11個酸馬奶樣品共發(fā)現(xiàn)25個核心OTUs,其相對含量占所有質控后合格序列數(shù)的 43.64%,且其中 24 個 OTUs為Lactobacillus helveticus 由此可見,雖然有的樣品中可能含有一些較為獨特的種系型,但酸馬奶共有大量的核心細菌菌群。(2)在酸馬奶制備過程中,細菌群落扮演了重要角色。為了探究酸馬奶發(fā)酵過程中的細菌群落結構和生物多樣性的動態(tài)變化,本研究采用Pacbio SMRT三代測序技術對從5個采樣點收集的22個樣品進行了 16s rRNA基因的測序。結果表明,酸馬奶樣品中共確定了 148個細菌種,歸屬于82個屬、8個門;細菌群落結構的差異歸因于分離地的不同;D組樣品細菌組成與其他組相比差異最顯著;細菌群落組成的動態(tài)變化結果顯示,在酸馬奶發(fā)酵0-9h期間,瑞士乳桿菌(Lactobacillus helveticus)數(shù)量逐漸增加,在發(fā)酵9h達到峰值,然后降低,而糞腸球菌(Enterococcus faecalis),耐久腸球菌(Enterococcus durans)和酪黃腸球菌(Enterococcus casseliflavus)在整個發(fā)酵過程中均呈現(xiàn)增加的趨勢,于24h達到最大值。(3)在基因水平,發(fā)酵不同時間點的樣品都主要由COG功能大類L(復制、重組與修復)、E(氨基酸運輸代謝)、J(翻譯、核糖體結構與生物合成)、G(碳水化合物轉運與代謝)組成。功能大類F(核苷酸轉運和代謝)、M(細胞壁/膜/包膜生物合成)、V(防御機制)、Q(次級代謝產(chǎn)物的生物合成、運輸和分解代謝)、L(復制、重組和修復)和U(胞內運輸、分泌和囊泡運輸)彼此之間存在較顯著的正相關關系。除此之外,COG功能大類與酸馬奶中的營養(yǎng)成分之間也存在較為密切的關系;贙EGG數(shù)據(jù)庫的注釋結果發(fā)現(xiàn),在發(fā)酵的前9個小時樣品共享了 92.7%的KO,這期間KO號種類上并沒有明顯的增加。隨著發(fā)酵時間的延長,酸馬奶樣品中微生物的基因豐度和代謝通路的分布會產(chǎn)生一定的變化?傮w而言,微生物基因相對含量在剛接種進去發(fā)酵劑時(B2)與鮮乳樣品(B1)之間存在較大差異。隨著發(fā)酵時間延長,菌群功能基因變化趨緩。
[Abstract]:As a fermented milk drink, acid horse milk is very popular in Central Asia and Eastern Europe because of its rich nutritional components and important economic value. Although acid Mais milk has a unique microbial community structure, the research on its core microbial community and microbial community dynamic changes and functional basis is not thorough. First of all, PacBio SM was used in this study. The RT sequencing technology identifies the core bacterial groups at the level of taxonomic status, and then takes 5 herdsmen families as sampling points and carries out dynamic collection of samples during the process of acid Mais milk production at different points of time. The dynamic changes of microbial diversity and functional genes in acid horse milk are carried out by macrogenome strategy. Study. Through the implementation of this study, we can thoroughly understand the function and interaction mechanism of the dynamic changes of microbial community structure to the quality of acid horse milk, and provide the original data and theoretical guidance for the quality improvement and industrial production of acid Mais milk. The main conclusions are as follows: (1) the core bacterial groups of the acid mare's milk are mainly subordinate to them. The composition of Lactobacillus helveticus, Lactobacillus kefiranofaciens, Lactobacillus gallinarum and Acetobater pasteurianus4 bacteria of 2 bacterial gates of Proteobacteria and Firmicutes. A total of 25 core OTUs were found in the 11 acid milk samples of this study, and their relative content accounted for 43.64% of the number of qualified sequences after all quality control. 24 of them OTUs is Lactobacillus helveticus, although some of the samples may contain some more unique species, but the acid horse milk has a large number of core bacterial flora. (2) the bacterial community plays an important role in the process of acid horse milk preparation, in order to explore the bacterial community structure and birth in the fermentation process of acid horse milk. In this study, the Pacbio SMRT three generation sequencing technology was used to sequence the 16S rRNA gene of 22 samples collected from 5 sampling points. The results showed that the acid horse milk samples identified 148 species of bacteria, belonging to 82 genera and 8 gates, and the differences in the structure of bacterial communities were attributed to the different separation sites; the sample of D group was fine. The microbial composition was the most significant difference compared with the other groups, and the dynamic changes of the bacterial community composition showed that the number of Lactobacillus helveticus increased gradually during the fermentation of 0-9h milk, and the peak value of the fermentation 9h, and then decreased, and the Enterococcus faecalis (Enterococcus faecalis), the Enterococcus durans (Enterococcus durans) and the casein. Enterococcus (Enterococcus casseliflavus) showed an increasing trend during the whole fermentation process and reached the maximum at 24h. (3) at the gene level, the samples at different time points were mainly composed of COG functions, L (replication, recombination and repair), E (amino acid transport and metabolism), J (translation, ribosome structure and biosynthesis), G (carbohydrate transport). Composition. Functional major F (nucleotide transshipment and metabolism), M (cell wall / membrane / capsule biosynthesis), V (defense mechanism), Q (biosynthesis of secondary metabolites, transport and catabolism), L (replication, recombination and repair) and U (intracellular transport, secretion and vesicle transport) have significant positive correlation with each other. In addition, COG work The KEGG database based on the KEGG database found that the samples shared 92.7% of the KO in the first 9 hours of the fermentation, and there was no significant increase in the number of the samples during the period of the fermentation. On the whole, the relative content of microorganism has a great difference between the fresh milk sample (B2) and the fresh milk sample (B1). With the prolongation of the fermentation time, the change of the functional gene of the bacteria group slows down.
【學位授予單位】:內蒙古農(nóng)業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TS252.1
【相似文獻】
相關期刊論文 前10條
1 母智森,白英;酸馬奶[J];內蒙古農(nóng)業(yè)大學學報(自然科學版);2003年01期
2 劉洪元,高昆;馬奶及酸馬奶(馬奶酒)的營養(yǎng)價值和醫(yī)療作用[J];中國食物與營養(yǎng);2003年04期
3 李星科;李開雄;鄒圣東;;酸馬奶酒[J];中國乳業(yè);2006年07期
4 王瑞珍;;酸馬奶的營養(yǎng)成分與保健特性[J];養(yǎng)殖技術顧問;2012年10期
5 金花,代麗君,高娃;酸馬奶[J];中國乳品工業(yè);1998年04期
6 任秀娟;趙一萍;布仁其其格;芒來;;酸馬奶的營養(yǎng)價值和產(chǎn)業(yè)化發(fā)展探究[J];內蒙古科技與經(jīng)濟;2014年03期
7 塞冬·敖拉哈;酸馬奶[J];中國食品;1986年08期
8 吳江媛;來自大草原的美食──酸馬奶[J];中國食品;2001年16期
9 賀銀鳳,李少英,母智深,王鋰韞,雙杰,吳敬,趙美霞;酸馬奶酒中微生物的分離鑒定及抗菌特性的研究[J];農(nóng)業(yè)工程學報;2002年02期
10 孫健,賀銀鳳,田建軍;酸馬奶酒中有機酸的抑菌作用[J];內蒙古農(nóng)業(yè)大學學報(自然科學版);2003年01期
相關會議論文 前1條
1 賀銀鳳;李少英;;酸馬奶酒中來自乳酸菌抗菌因子的研究(摘要)[A];格萊姆抗菌肽——抗菌肽開發(fā)與應用技術研討會論文集[C];2009年
相關重要報紙文章 前3條
1 曉張;草原風味酸馬奶[N];中國食品質量報;2003年
2 實習記者 錫林塔娜 實習生 記娜;我盟舉辦蒙醫(yī)策格(酸馬奶)療法學術研討會[N];錫林郭勒日報(漢);2011年
3 本報駐比什凱克記者 孫長棟;“紹羅”和“旦” 圓桶“酸奶”?[N];文匯報;2010年
相關博士學位論文 前5條
1 其木格蘇都;自然發(fā)酵酸馬奶細菌多樣性及其基因動態(tài)變化研究[D];內蒙古農(nóng)業(yè)大學;2017年
2 孫天松;中國新疆地區(qū)傳統(tǒng)發(fā)酵酸馬奶的化學組成及乳酸菌生物多樣性研究[D];內蒙古農(nóng)業(yè)大學;2006年
3 賀銀鳳;酸馬奶酒中微生物的分離鑒定及抗菌因子的研究[D];內蒙古農(nóng)業(yè)大學;2008年
4 布仁其其格;酸馬奶傳統(tǒng)發(fā)酵過程的宏轉錄組學分析及細菌群落結構動態(tài)變化研究[D];內蒙古農(nóng)業(yè)大學;2014年
5 陳玉潔;酸馬奶源酵母菌代謝物對致病性大腸桿菌的抑菌作用機理研究[D];內蒙古農(nóng)業(yè)大學;2015年
相關碩士學位論文 前10條
1 周海軍;益生菌酸馬奶片工藝及其對實驗性高脂血癥大鼠的影響[D];內蒙古大學;2008年
2 孫健;酸馬奶酒中抗菌物質的分離及抗菌作用的研究[D];內蒙古農(nóng)業(yè)大學;2003年
3 俄合拉斯·斯巴達克;酸馬奶粉的加工技術研究[D];新疆農(nóng)業(yè)大學;2012年
4 鋼照日格;蒙古國酸馬奶中酵母菌的分離及主要生物學特性研究[D];內蒙古農(nóng)業(yè)大學;2015年
5 甄曉宇;酸馬奶噴霧干燥工藝的研究[D];新疆農(nóng)業(yè)大學;2015年
6 張曉旭;西部牧區(qū)酸馬奶和奶渣中酵母菌分離篩選及其應用研究[D];西北農(nóng)林科技大學;2016年
7 馬俊英;酸馬奶中優(yōu)勢乳酸菌的鑒定及其發(fā)酵特性研究[D];西北農(nóng)林科技大學;2016年
8 姜晶;酸馬奶中植物乳酸桿菌HS-R9的分離鑒定、細菌素提取及對小鼠免疫屏障的影響[D];內蒙古農(nóng)業(yè)大學;2016年
9 岳佳;傳統(tǒng)發(fā)酵酸馬奶中血管緊張素轉換酶抑制肽的分離純化及結構鑒定[D];內蒙古農(nóng)業(yè)大學;2011年
10 武俊瑞;新疆部分地區(qū)酸馬奶的化學與微生物組成分析及其中乳桿菌的分離鑒定[D];內蒙古農(nóng)業(yè)大學;2005年
,本文編號:1936522
本文鏈接:http://sikaile.net/kejilunwen/jiyingongcheng/1936522.html