微小線段高速加工的軌跡優(yōu)化建模及前瞻插補(bǔ)技術(shù)研究
[Abstract]:High-speed machining technology is widely used in the manufacturing of aerospace, automobile, and mould. It is an important means to improve the processing quality and efficiency, and the International Institute of Production Engineering (CIRP) has identified the high-speed machining technology as one of the center of the manufacturing technology in the 21st century. The small line segment is the most widely used form of the machining path of complex curved surface parts such as the impeller, the blade, the die and the like, and the high-speed machining of the micro-segment path has become one of the core technologies of the high-speed machining of the complex curved parts. The discontinuous characteristic of the corner in the path of the micro-segment can lead to frequent acceleration and deceleration, which becomes the bottleneck of the high-speed and smooth movement of the numerical control machine. Continuous micro-segment rotation angular velocity smoothing and cross-section speed planning are the most difficult problem for continuous micro-line segment interpolation, and is still a hot spot technology for advanced numerical control system manufacturers to improve surface processing efficiency and quality. The invention provides a G-2 continuous B-spline global fairing algorithm and a interpolation technique, The method is integrated in the open-end numerical control system to realize the high-speed processing of the trace of the micro-segment, and the validity and practicability of the proposed method are verified. The main research contents and innovative results are as follows: (1) The method of continuous global fairing and linear/ spline hybrid path cross-section plus speed reduction is proposed. The data compression and G ~ 2 continuous global fairing of the path of the micro line segment are realized by using the cubic B-spline interpolation fitting algorithm, and the S-curve plus speed reduction strategy based on the deceleration characteristic equation is proposed, and the acceleration and deceleration characteristics of the machine tool and the geometric characteristics of the path of the tool path are met, A cross-segment forward speed planning is carried out on the generated linear/ spline mixing path. The method is suitable for a short and large number of dense line segment paths and smooth paths with small corners, and can greatly improve the feeding speed stability and the processing efficiency. In the ladle mold processing experiment, the method can improve the processing efficiency by about 4 times compared with the method without using the method. and (2) a three-axis tool path angle error distribution model and an angular velocity optimization method are established. in ord to obtain that transition speed of the optimal rotation angle as the target, the system setting precision is assign as the smooth approximation error and the interpolation arch high error, under the error constraint, the light of the linear path angle is realized by the B-Bezier transition curve pair (BTP), and the servo capability constraint of each axis of the machine tool is taken into account, and the real-time interpolation of the micro-segment knife path is realized by using the forward-looking function. in the mask processing experiment, the processing time can be shortened by 25%, compared with the method that does not adopt the corner error distribution model method, and the processing time can be shortened by 25% under the premise of ensuring the track precision. and (3) establishing a G-2 continuous real-time fitting method of a linear tool path under a five-axis workpiece coordinate system and a linear tool path under the working coordinate. The system setting accuracy is assigned as the light-to-close approximation error of the nose point and the knife-axis point and the high-error of the interpolation bow. Two cubic B-spline curves are inserted at the joint of the line segment, and the linear tool path under the working coordinate is fitted into the G-2 continuous double-spline track in real time. The method satisfies the conditions of approximate error constraint, parametric synchronization constraint and curvature continuous constraint, and further comprehensively considers the constraint conditions of the curve transition error and the interpolation error, the maximum tangential acceleration/ acceleration, the servo capability of each axis of the machine tool, and the like, and carries out the self-adaptive speed planning, and the high-speed machining of the five-axis micro-segment is realized. Through the simulation and experiment, the algorithm has good effect in the five-axis tool path fairing, the smooth rotation speed and the angle track precision control. (4) The experimental method of obtaining the velocity-acceleration envelope of each shaft of the machine tool by applying the positive and negative direction excitation to the servo motor is studied. By analyzing the feasible range of velocity and acceleration in the envelope graph, the maximum speed and the maximum acceleration constraint value are obtained by using the maximum matching method and the adaptive matching method, and the constraint value is applied to the interpolation operation of the numerical control system. (5) The open-end numerical control system based on multi-thread concurrent execution management and scheduling mechanism is developed, and the high-speed micro-segment interpolation algorithm is applied in this paper. The three-time B-spline global light-smoothing algorithm and the angle-based error distribution model B-Bezier-angle transition algorithm are integrated and applied in the full-digital bus-type high-end numerical control system of the Guangzhou numerical control GSK27, and the high-speed machining of the die is realized. The local fairing algorithm and the identification parameter integration of the workpiece coordinate system based on the five-axis corner error model are applied to the CNC GSK25i five-axis linkage processing numerical control system, and is applied to the machining of high-speed and complex space curve parts of the die.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG659
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚偉明;空間橢圓的變換插補(bǔ)法[J];制造技術(shù)與機(jī)床;2000年07期
2 章仁義,吳焱明;空間橢圓插補(bǔ)方法研究[J];機(jī)械工藝師;2001年07期
3 吳光琳,林建平,李從心,阮雪榆;參數(shù)曲面的快速實(shí)時(shí)插補(bǔ)[J];機(jī)械制造;2002年01期
4 鮑莉,鮑劍斌,張洛平,仲志丹;插補(bǔ)與誤差分析[J];礦山機(jī)械;2002年09期
5 富毅和;最小偏差插補(bǔ)方法的擴(kuò)展及應(yīng)用[J];浙江工貿(mào)職業(yè)技術(shù)學(xué)院學(xué)報(bào);2003年04期
6 范進(jìn)楨,秦貴林,張海英;時(shí)間分割插補(bǔ)法插補(bǔ)圓弧算法的改進(jìn)[J];機(jī)械工程師;2005年07期
7 張文潔;一種新的插補(bǔ)方法的探索[J];機(jī)械設(shè)計(jì)與制造;2005年06期
8 徐海銀;李丹;李端鈴;何頂新;;隱曲線的線性和旋轉(zhuǎn)插補(bǔ)[J];中國機(jī)械工程;2005年21期
9 施群,王小椿;步進(jìn)伺服系統(tǒng)高效插補(bǔ)控制算法研究[J];電氣傳動(dòng);2005年03期
10 陳貴銀;;比較積分法橢圓插補(bǔ)的研究[J];武漢船舶職業(yè)技術(shù)學(xué)院學(xué)報(bào);2006年04期
相關(guān)會(huì)議論文 前5條
1 余予;李俊;任芝花;張志富;;標(biāo)準(zhǔn)序列法在日平均氣溫缺測數(shù)據(jù)插補(bǔ)中的應(yīng)用[A];第八屆全國優(yōu)秀青年氣象科技工作者學(xué)術(shù)研討會(huì)論文匯編[C];2014年
2 呂強(qiáng);;編寫數(shù)控車、銑床加工多邊形插補(bǔ)程序的方法[A];數(shù)控技術(shù)學(xué)術(shù)研討會(huì)論文集[C];1999年
3 安金剛;;離線插補(bǔ)技術(shù)在運(yùn)動(dòng)控制中的應(yīng)用[A];全國第十二屆空間及運(yùn)動(dòng)體控制技術(shù)學(xué)術(shù)會(huì)議論文集[C];2006年
4 鄭金興;張銘鈞;孟慶鑫;;變插補(bǔ)周期的數(shù)控進(jìn)給速度控制算法研究[A];先進(jìn)制造技術(shù)論壇暨第五屆制造業(yè)自動(dòng)化與信息化技術(shù)交流會(huì)論文集[C];2006年
5 谷永山;王銳;韋穗;;基于兩幅視圖的縱向插補(bǔ)方法[A];第十五屆全國圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)博士學(xué)位論文 前8條
1 王允森;基于樣條插補(bǔ)的高質(zhì)量加工關(guān)鍵技術(shù)的研究[D];中國科學(xué)院研究生院(沈陽計(jì)算技術(shù)研究所);2015年
2 金永喬;微小線段高速加工的軌跡優(yōu)化建模及前瞻插補(bǔ)技術(shù)研究[D];上海交通大學(xué);2015年
3 葉偉;數(shù)控系統(tǒng)納米插補(bǔ)及控制研究[D];北京交通大學(xué);2010年
4 梅鵬;中國群死群傷火災(zāi)數(shù)據(jù)插補(bǔ)及快速損失評(píng)估研究[D];中國科學(xué)技術(shù)大學(xué);2013年
5 孟書云;高精度開放式數(shù)控系統(tǒng)復(fù)雜曲線曲面插補(bǔ)關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2006年
6 劉巍;ARGO稀損數(shù)據(jù)插補(bǔ)與三維海洋要素場重構(gòu)研究[D];西南交通大學(xué);2012年
7 周勇;高速進(jìn)給驅(qū)動(dòng)系統(tǒng)動(dòng)態(tài)特性分析及其運(yùn)動(dòng)控制研究[D];華中科技大學(xué);2008年
8 郝永江;復(fù)雜參數(shù)曲線曲面加工控制與狀態(tài)監(jiān)測技術(shù)研究[D];天津大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 劉艷玲;調(diào)查數(shù)據(jù)無回答的插補(bǔ)方法及模擬比較[D];天津財(cái)經(jīng)大學(xué);2012年
2 李玲雪;缺失偏態(tài)數(shù)據(jù)下異方差模型的統(tǒng)計(jì)推斷[D];昆明理工大學(xué);2015年
3 李靜華;基于PMM插補(bǔ)法的線性回歸模型系數(shù)估計(jì)量的模擬研究[D];天津財(cái)經(jīng)大學(xué);2015年
4 王錦霞;基于質(zhì)譜篩選差異表達(dá)蛋白的統(tǒng)計(jì)學(xué)方法研究[D];大連海事大學(xué);2016年
5 趙偉;針對(duì)回歸模型的缺失數(shù)據(jù)插補(bǔ)方法模擬分析[D];天津財(cái)經(jīng)大學(xué);2014年
6 駱新珍;基于DA插補(bǔ)法的線性回歸模型系數(shù)估計(jì)量的模擬研究[D];天津財(cái)經(jīng)大學(xué);2014年
7 肖哲;基于STM32的嵌入式數(shù)控插補(bǔ)控制器的研究與實(shí)現(xiàn)[D];湖北工業(yè)大學(xué);2016年
8 李珍;不完全測量信息系統(tǒng)的辨識(shí)研究[D];安徽工程大學(xué);2016年
9 王偉;基于判別分析的多重插補(bǔ)影響因素研究[D];河北經(jīng)貿(mào)大學(xué);2015年
10 李圣瑜;調(diào)查數(shù)據(jù)缺失值的多重插補(bǔ)研究[D];河北經(jīng)貿(mào)大學(xué);2015年
,本文編號(hào):2365745
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2365745.html