A Simulation Model to Determine the Capacity of a Y-type Wat
發(fā)布時間:2022-01-10 06:06
論文使用Arena軟件進行復雜系統(tǒng)的仿真,包括交通規(guī)則、潮汐窗口、天氣條件和不同船型等。以盤錦港為案例,研究了船舶航速為10節(jié)時Y型航道的通過能力。除此之外,在船舶航速為11節(jié)時,取潮位累積頻率80%,下沉值仍然滿足船舶的安全航行要求。研究表明,在船舶航速為11節(jié)時,由于船舶等待潮位的時間增加,與潮位累計頻率90%時相比,航道的通過能力有所減小。評估港口服務(wù)水平是港口管理機構(gòu)的最重要的目標之一。通常使用船舶平均等待時間與船舶平均服務(wù)時間的比值來評估港口的效率。由于港口運營的隨機性,Arena軟件可用于仿真復雜的港口系統(tǒng)。本篇論文以主航道為研究對象,該航道同時擁有東、西兩條分支。通過對盤錦港進行一年的仿真研究,作者計算了每種船舶類型的平均等待時間與平均服務(wù)時間的比值。結(jié)果表明,10萬噸級油船對航行水位的要求較高,其等待潮位的時間較長,而其它貨種的船舶的等待時間都在可接受范圍內(nèi)。隨后,重新構(gòu)建模型研究了不乘潮進港的可能性,以及此時船舶的平均等待時間與平均服務(wù)時間的比值。結(jié)果表明,平均等待時間與平均服務(wù)時間的比值有所減小。對于本研究中的其它船型,沒有因交通條件或泊位不足而導致的延誤,盤錦港的...
【文章來源】:大連理工大學遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:101 頁
【學位級別】:碩士
【文章目錄】:
摘要
ABSTRACT
LIST OF ABBREVIATIONS
LIST OF SYMBOLS
LIST OF UNITS
1 INTRODUCTION
1.1 Generic problem
1.1.1. Problem Description
1.1.2. Research purpose
1.2 Case study – The Panjin Seaport
1.2.1 General context
1.2.2 Rongxing port area’s general description
1.3 Thesis objectives
1.3.1 Primary objective
1.3.2 Innovations in science and practice
1.4 Research approach
1.5 Thesis structure
1.6 Chapter summary
2 LITERATURE REVIEW
2.1 Introduction
2.1.1. The definition of Seaport Waterway Capacity
2.1.2. The Concept of the Squat
2.1.3. The Causes of Sinkage and Trim
2.1.4. The Froude Depth Number
2.2 Channel configuration types
2.2.1 The Water depth of channel
2.3 Estimation of the amount of the squat
2.3.1 Huuska/Gulievformula
2.3.2 The Romisch squat formulas
2.4 Chapter summary
3. METHODOLOGY
3.1 Rockwell Arena
3.2 Model Assumptions
3.3 Logic Flowchart of Ship Operations for an Arrival Ship with a Y-Type WaterwayIntersection
3.4 The overall logical model for an inbound ship
3.4.1 The main components that used for the shipping process in the port
3.4.2 Sub - model of check intersection and safe distance for an inbound vessel
3.4.3 Sub - model of check intersection and safe distance for an outbound vessel fromwestern area
3.4.4. After the ship arrived at the berth
3.5 SIMULATION MODEL
3.5.1. Input Parameters
3.5.2. Ship Parameters
3.5.3. Channel Traffic Type and Entry& Exit Rules for the Port as Input Parameters
3.5.4. Berth Tonnage Composition and the Berth’s Service Time
3.5.5. Natural Conditions
3.5.6. Tidal Window
3.6 Model Establishment
3.7. Chapter Summary
4. MODEL CHECK; RUN LENGTH AND NUMBER OF REPLICATIONS
4.1. VERIFICATION AND VALIDATION OF THE MODEL
4.2. RUN LENGTH AND NUMBER OF REPLICATIONS
4.3. Chapter summary
5. ANALYSIS OF RESULTS
5.1. Analysis of the initial model for a Y-type waterway intersection results
5.1.1. Classify the reason of the delay
5.1.2. By analyzing the simulation results
5.2. Analysis of the second model for different ship speeds results
5.3. Chapter summary
6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
6.1. SUMMARY
6.2. CONCLUSION
6.2.1. Squat amount calculation methods
6.2.2. Port service level and its usages
6.2.3. Channel capacity under different ship speeds
6.3. RECOMMENDATIONS
REFERENCES
APPENDIX (I) Arena simulation Program
ACKNOWLEDGEMENTS
本文編號:3580185
【文章來源】:大連理工大學遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:101 頁
【學位級別】:碩士
【文章目錄】:
摘要
ABSTRACT
LIST OF ABBREVIATIONS
LIST OF SYMBOLS
LIST OF UNITS
1 INTRODUCTION
1.1 Generic problem
1.1.1. Problem Description
1.1.2. Research purpose
1.2 Case study – The Panjin Seaport
1.2.1 General context
1.2.2 Rongxing port area’s general description
1.3 Thesis objectives
1.3.1 Primary objective
1.3.2 Innovations in science and practice
1.4 Research approach
1.5 Thesis structure
1.6 Chapter summary
2 LITERATURE REVIEW
2.1 Introduction
2.1.1. The definition of Seaport Waterway Capacity
2.1.2. The Concept of the Squat
2.1.3. The Causes of Sinkage and Trim
2.1.4. The Froude Depth Number
2.2 Channel configuration types
2.2.1 The Water depth of channel
2.3 Estimation of the amount of the squat
2.3.1 Huuska/Gulievformula
2.3.2 The Romisch squat formulas
2.4 Chapter summary
3. METHODOLOGY
3.1 Rockwell Arena
3.2 Model Assumptions
3.3 Logic Flowchart of Ship Operations for an Arrival Ship with a Y-Type WaterwayIntersection
3.4 The overall logical model for an inbound ship
3.4.1 The main components that used for the shipping process in the port
3.4.2 Sub - model of check intersection and safe distance for an inbound vessel
3.4.3 Sub - model of check intersection and safe distance for an outbound vessel fromwestern area
3.4.4. After the ship arrived at the berth
3.5 SIMULATION MODEL
3.5.1. Input Parameters
3.5.2. Ship Parameters
3.5.3. Channel Traffic Type and Entry& Exit Rules for the Port as Input Parameters
3.5.4. Berth Tonnage Composition and the Berth’s Service Time
3.5.5. Natural Conditions
3.5.6. Tidal Window
3.6 Model Establishment
3.7. Chapter Summary
4. MODEL CHECK; RUN LENGTH AND NUMBER OF REPLICATIONS
4.1. VERIFICATION AND VALIDATION OF THE MODEL
4.2. RUN LENGTH AND NUMBER OF REPLICATIONS
4.3. Chapter summary
5. ANALYSIS OF RESULTS
5.1. Analysis of the initial model for a Y-type waterway intersection results
5.1.1. Classify the reason of the delay
5.1.2. By analyzing the simulation results
5.2. Analysis of the second model for different ship speeds results
5.3. Chapter summary
6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
6.1. SUMMARY
6.2. CONCLUSION
6.2.1. Squat amount calculation methods
6.2.2. Port service level and its usages
6.2.3. Channel capacity under different ship speeds
6.3. RECOMMENDATIONS
REFERENCES
APPENDIX (I) Arena simulation Program
ACKNOWLEDGEMENTS
本文編號:3580185
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/3580185.html
教材專著