TBM支撐推進換步機液系統(tǒng)數(shù)字仿真分析
本文選題:硬巖掘進機 + 聯(lián)合仿真 ; 參考:《天津大學》2014年碩士論文
【摘要】:本文緊密結(jié)合國家863課題“大直徑全斷面隧道掘進裝備及重大工程機械裝備研究”和973課題“硬巖掘進裝備的關(guān)鍵基礎問題”,以研究TBM的主機系統(tǒng)特性為目的,對其支撐-推進-換步系統(tǒng)進行了建模和仿真分析。旨在對糾偏系統(tǒng)、推進系統(tǒng)等進行詳細準確的數(shù)字化建模,并在此基礎上對其特性進行分析。在詳細介紹了TBM主機系統(tǒng),尤其是其支撐-推進-換步系統(tǒng)的機械結(jié)構(gòu)功能并設計了液壓系統(tǒng)的基礎上,確定了TBM的主要工作步驟和各部分關(guān)節(jié)間的相互運動形式,分析并確定了TBM推進液壓缸部分的四缸連通結(jié)構(gòu)及其強機液耦合特性,為后文的數(shù)字模型建立和仿真分析奠定了基礎。為了解決其多系統(tǒng)耦合特性的仿真問題,采用聯(lián)合仿真的方式進行分析。建立了推進系統(tǒng)的機械、液壓和控制系統(tǒng)模型,正確添加聯(lián)合仿真模塊和通訊接口,建立了軟件間的聯(lián)系,在合理添加圍巖邊界條件的基礎上對其糾偏系統(tǒng)動態(tài)特性進行了仿真。分析了TBM支撐-推進-換步系統(tǒng)在正常推進過程中由于受力原因造成偏載時糾偏系統(tǒng)的動態(tài)響應,重點分析了載荷波動頻率、載荷形式、液壓油源參數(shù)、推程以及液壓元件參數(shù)對糾偏性能的影響,同時提出了糾偏率這一性能評價指標。針對TBM系統(tǒng)設計中高剛度這一重要設計指標,對推進系統(tǒng)部分零部件進行了有限元網(wǎng)格劃分,對掘進中整機剛度情況進行了研究。分析了不同推程下整機剛度的變化,以及系統(tǒng)各部分零部件對整機剛度的貢獻情況,得出了一系列應力和變形云圖以及剛度變化趨勢。其中重點對液壓系統(tǒng)的等效剛度進行了計算,得出了整機剛度的薄弱環(huán)節(jié),并由此提出了提高整機剛度的幾種解決方案。文章采用數(shù)字仿真的方式對TBM推進系統(tǒng)的特性進行詳細分析,得出一系列重要結(jié)論和規(guī)律,為項目后續(xù)的數(shù)字樣機建立,試驗臺搭建,乃至樣機的研制生產(chǎn)提供重要技術(shù)支撐。
[Abstract]:In this paper, the main purpose of this paper is to study the characteristics of TBM mainframe system by combining the national 863 project "study of large-diameter full-section tunneling equipment and major construction machinery equipment" and 973 project "key basic problems of hard rock tunneling equipment", in order to study the characteristics of TBM mainframe system. The modeling and simulation of the supporting-propulsion-step-changing system are carried out. The aim of this paper is to carry on the detailed and accurate digital modeling of the correction system and the propulsion system, and to analyze the characteristics of the system. On the basis of introducing in detail the mechanical structure function of TBM mainframe system, especially its supporting, propulsive and changing step system and designing hydraulic system, the main working steps of TBM and the mutual motion form of each part of joints are determined. The four-cylinder connection structure of TBM propulsion hydraulic cylinder and its strong mechanical and liquid coupling characteristics are analyzed and determined, which lays a foundation for the establishment of digital model and simulation analysis later on. In order to solve the problem of multi-system coupling, the method of joint simulation is used. The mechanical, hydraulic and control system models of the propulsion system are established, the joint simulation module and communication interface are added correctly, and the relationship between the software is established. Based on the reasonable addition of surrounding rock boundary conditions, the dynamic characteristics of the correction system are simulated. In this paper, the dynamic response of the bias correction system of TBM brace-propulsive and changing step system during normal propulsion is analyzed, and the load fluctuation frequency, load form and hydraulic oil source parameters are analyzed, especially, the load fluctuation frequency, load form and hydraulic oil source parameters are analyzed, and the load fluctuation frequency, load form and hydraulic source parameters are analyzed. The influence of push range and hydraulic component parameters on the deviation correction performance is also presented, and the performance evaluation index of deviation correction rate is put forward. Aiming at the important design index of high stiffness in the design of TBM system, the finite element mesh of some parts of the propulsion system is carried out, and the stiffness of the whole machine in the driving process is studied. The variation of the stiffness of the whole machine and the contribution of parts and components of the system to the stiffness of the whole machine are analyzed. A series of stress and deformation cloud diagrams and the change trend of the stiffness are obtained. The equivalent stiffness of hydraulic system is calculated, the weak link of the stiffness of the whole machine is obtained, and several solutions to improve the stiffness of the whole machine are put forward. In this paper, the characteristics of TBM propulsion system are analyzed in detail by means of digital simulation, and a series of important conclusions and rules are obtained, which provide important technical support for the construction of digital prototype, the construction of test bench, and the development and production of prototype.
【學位授予單位】:天津大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U455.31
【參考文獻】
相關(guān)期刊論文 前10條
1 李玉波;;當金山特長隧道鉆爆法與TBM施工地質(zhì)條件分析[J];鐵道建筑;2012年12期
2 ;The three-dimension model for the rock-breaking mechanism of disc cutter andanalysis of rock-breaking forces[J];Acta Mechanica Sinica;2012年03期
3 劉勛;劉玉;李新有;柏峰;張云飛;;液壓伺服控制系統(tǒng)的液壓彈簧剛度和機械負載剛度耦合特性分析[J];鋼鐵技術(shù);2012年02期
4 王國棟;何友輝;肖聚亮;單慶臣;周學均;;基于AMESim的筒閥多缸同步系統(tǒng)建模及動態(tài)特性仿真[J];天津大學學報;2011年10期
5 謝地;權(quán)龍;;基于ADAMS和AMEsim的裝載機聯(lián)合仿真[J];礦山機械;2011年10期
6 王夢恕;譚忠盛;;中國隧道及地下工程修建技術(shù)[J];中國工程科學;2010年12期
7 劉術(shù)臣;;TBM技術(shù)發(fā)展方向及其國內(nèi)應用前景[J];鐵道建筑技術(shù);2010年S1期
8 馬如奇;郝雙暉;鄭偉峰;郝明暉;宋寶玉;;基于MATLAB與ADAMS的機械臂聯(lián)合仿真研究[J];機械設計與制造;2010年04期
9 時峰;;LMS Virtual.Lab Motion新一代多體動力學軟件[J];CAD/CAM與制造業(yè)信息化;2008年12期
10 茅承覺;;我國全斷面巖石掘進機(TBM)發(fā)展的回顧與思考[J];建設機械技術(shù)與管理;2008年05期
相關(guān)博士學位論文 前3條
1 馮斌;液壓油有效體積彈性模量及測量裝置的研究[D];浙江大學;2011年
2 王靜;大流量液壓源恒溫恒壓控制及油液彈性模量研究[D];浙江大學;2009年
3 王友漁;一類球坐標型混聯(lián)機器人靜剛度建模理論與方法研究[D];天津大學;2008年
相關(guān)碩士學位論文 前3條
1 周鑫;基于Adams與Matlab的汽車電動助力轉(zhuǎn)向系統(tǒng)的聯(lián)合仿真[D];武漢理工大學;2009年
2 楊揚;模擬盾構(gòu)推進系統(tǒng)的設計和研究[D];浙江大學;2006年
3 王友漁;可重構(gòu)混聯(lián)機械手Tricept和TriVariant的靜剛度預估技術(shù)研究[D];天津大學;2006年
,本文編號:2072728
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2072728.html