BZT1000T馱橋車(chē)行走同步控制系統(tǒng)設(shè)計(jì)與研究
本文選題:驅(qū)動(dòng)系統(tǒng) + 同步控制; 參考:《燕山大學(xué)》2014年碩士論文
【摘要】:BZT1000T馱橋車(chē)是用于橋梁改造項(xiàng)目的專(zhuān)用車(chē)輛。其中行走驅(qū)動(dòng)控制系統(tǒng)的合理設(shè)計(jì)是保證馱橋車(chē)穩(wěn)定、安全運(yùn)行的關(guān)鍵。針對(duì)該車(chē)在施工過(guò)程中出現(xiàn)的打滑及行走不同步等一系列問(wèn)題,需要對(duì)驅(qū)動(dòng)同步控制系統(tǒng)進(jìn)行重新設(shè)計(jì)。 首先,考慮到馱橋車(chē)的運(yùn)行工況,本文設(shè)計(jì)了液壓行走驅(qū)動(dòng)系統(tǒng),并進(jìn)行關(guān)鍵元件的計(jì)算及選型。本文對(duì)車(chē)速檢測(cè)及計(jì)算作了介紹,并提出了計(jì)算車(chē)速的新方法,,從而減小了計(jì)算誤差,為后續(xù)車(chē)速控制提供了理論依據(jù)?紤]到馱橋車(chē)的行走穩(wěn)定性,介紹了馱橋車(chē)的動(dòng)力特性及調(diào)速原理。針對(duì)馱橋車(chē)在行走過(guò)程中出現(xiàn)的打滑現(xiàn)象,采用電液換向閥進(jìn)行防打滑設(shè)計(jì)。 其次,本文采用基于S-C模塊的方法對(duì)泵控馬達(dá)系統(tǒng)設(shè)計(jì)PID控制器,并用Matlab軟件對(duì)系統(tǒng)建模仿真,得到較穩(wěn)定的馬達(dá)轉(zhuǎn)速響應(yīng)曲線。 在設(shè)計(jì)了PID控制器的基礎(chǔ)上,本文摒棄了將馬達(dá)轉(zhuǎn)速或者車(chē)速作為最終控制目標(biāo)的傳統(tǒng)方法,采用將1號(hào)車(chē)和2號(hào)車(chē)的位移作為控制目標(biāo),分別用并行同步控制、主從同步控制以及交叉耦合控制策略對(duì)兩車(chē)的行走同步系統(tǒng)進(jìn)行建模及仿真分析。得出采用交叉耦合控制方案在大負(fù)載及偏載嚴(yán)重的情況下仍能保證兩車(chē)同步,較其他兩種控制策略的同步效果有明顯改善,為工程車(chē)輛實(shí)現(xiàn)雙車(chē)同步提供了理論基礎(chǔ)。 最后,通過(guò)對(duì)馱橋車(chē)行走系統(tǒng)所要實(shí)現(xiàn)功能進(jìn)行分析,設(shè)計(jì)了基于CAN總線的驅(qū)動(dòng)系統(tǒng)控制方案,并選擇相應(yīng)的電控元件。在此基礎(chǔ)上利用CoDeSys軟件對(duì)馱橋車(chē)行走控制系統(tǒng)編寫(xiě)控制程序。
[Abstract]:The BZT 1000 T piggyback car is a special vehicle used in bridge reconstruction project. The reasonable design of the driving control system is the key to ensure the stable and safe operation of the piggyback vehicle. In view of a series of problems such as skidding and non-synchronization of the vehicle during construction, it is necessary to redesign the drive synchronous control system. Firstly, considering the operating conditions of the piggyback truck, the hydraulic driving system is designed. The key components are calculated and selected. This paper introduces the speed detection and calculation, and puts forward a new method to calculate the speed, which reduces the calculation error and provides the theoretical basis for the subsequent speed control. Considering the running stability of piggyback vehicle, the dynamic characteristics and speed regulation principle of piggyback vehicle are introduced. In view of the skidding phenomenon of piggyback vehicle in the course of walking, the electro-hydraulic directional valve is used to design the anti-skid. Secondly, the pid controller is designed for the pump control motor system based on S-C module, and the system is modeled and simulated by Matlab software. Based on the design of pid controller, the traditional method of taking motor speed or speed as the ultimate control objective is abandoned, and the displacement of car 1 and 2 is used as the control target. The parallel synchronous control, master-slave synchronous control and cross-coupling control strategy are used to model and simulate the synchronous system of two vehicles. It is concluded that the cross-coupling control scheme can still guarantee the synchronization of two vehicles under heavy load and heavy eccentric load, and the synchronization effect of the other two control strategies is obviously improved, which provides a theoretical basis for the realization of dual vehicle synchronization in engineering vehicles. Based on the analysis of the function of the piggyback vehicle walking system, the control scheme of the driving system based on can bus is designed, and the corresponding electronic control elements are selected. On the basis of this, CoDeSys software is used to compile the control program for the traveling control system of the piggyback wagon.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U445.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫祖望,張義甫,郭德虎;推土機(jī)動(dòng)態(tài)性能試驗(yàn)的非平穩(wěn)隨機(jī)數(shù)據(jù)模型和處理方法[J];工程機(jī)械;1988年10期
2 王欣;張明輝;高順德;周彩南;高一平;;大型動(dòng)力平板車(chē)技術(shù)的發(fā)展[J];工程機(jī)械與維修;2006年12期
3 楊卓林;詹立勤;賈強(qiáng)樂(lè);張少軍;;MTE215-12-4型模塊式動(dòng)力液壓平板運(yùn)輸車(chē)[J];工程機(jī)械;2011年09期
4 唐經(jīng)世;;鐵路架橋機(jī)、運(yùn)梁車(chē)的發(fā)展歷程及成就[J];建設(shè)機(jī)械技術(shù)與管理;2009年11期
5 鄧習(xí)樹(shù),李自光;當(dāng)前液壓系統(tǒng)仿真技術(shù)發(fā)展現(xiàn)狀及趨勢(shì)[J];機(jī)床與液壓;2003年01期
6 陳建濤;李運(yùn)華;;基于OPC和Web Services的監(jiān)控系統(tǒng)[J];計(jì)算機(jī)工程;2009年20期
7 蘇東海,韓國(guó)惠,于江華,史洪林;液壓同步控制系統(tǒng)及其應(yīng)用[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2005年04期
8 帥文;吳運(yùn)新;;可編程控制器EPEC2023、2024在電加熱爐流量控制系統(tǒng)中的應(yīng)用[J];儀表技術(shù)與傳感器;2006年05期
9 職山杰;高愛(ài)華;張紅波;劉剛;;3700t大型模塊化運(yùn)載裝備[J];液壓氣動(dòng)與密封;2010年10期
10 趙杏新;;靜液壓驅(qū)動(dòng)車(chē)輛電子防打滑系統(tǒng)實(shí)現(xiàn)[J];液壓氣動(dòng)與密封;2011年10期
相關(guān)博士學(xué)位論文 前1條
1 郭治富;液壓仿真轉(zhuǎn)臺(tái)同步控制器定量反饋設(shè)計(jì)方法研究[D];哈爾濱工業(yè)大學(xué);2010年
本文編號(hào):2000683
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2000683.html