瀝青混凝土路面溫度應(yīng)力及溫縮裂縫研究
本文選題:瀝青路面 + 溫度場(chǎng); 參考:《吉林大學(xué)》2014年碩士論文
【摘要】:我國(guó)北方寒冷地區(qū)瀝青混凝土路面的低溫開(kāi)裂現(xiàn)象十分普遍,經(jīng)過(guò)一個(gè)寒冷的冬季后,經(jīng)常在路表面出現(xiàn)按一定間距分布的橫向裂縫,這種現(xiàn)象在世界其他寒冷地區(qū)也經(jīng)常發(fā)生。裂縫的出現(xiàn)為水進(jìn)入道路結(jié)構(gòu)內(nèi)提供了有利條件,從而導(dǎo)致道路結(jié)構(gòu)的承載能力及服務(wù)壽命顯著降低,因此對(duì)寒冷地區(qū)瀝青混凝土路面進(jìn)行溫度應(yīng)力分析具有非常重要的現(xiàn)實(shí)意義。 論文首先根據(jù)工程路段實(shí)測(cè)溫度值,應(yīng)用有限元軟件ANSYS模擬道路結(jié)構(gòu)沿深度方向的溫度場(chǎng)分布,同時(shí)計(jì)算結(jié)構(gòu)層溫度梯度。研究結(jié)果表明:道路表面與土基底面的溫差越大,結(jié)構(gòu)內(nèi)的溫度梯度越大;隨著道路深度的增加,溫度梯度的絕對(duì)值越來(lái)越。辉谙募竞颓锛,結(jié)構(gòu)層溫度梯度為正溫度梯度,而在冬季,結(jié)構(gòu)層溫度梯度為負(fù)溫度梯度。 然后,在參考大量國(guó)內(nèi)外相關(guān)文獻(xiàn)及研究成果的基礎(chǔ)上,建立低溫下瀝青混凝土道路熱—結(jié)構(gòu)耦合三維有限元模型,分析降溫幅度、瀝青混凝土面層及基層參數(shù)對(duì)瀝青路面溫度應(yīng)力的影響規(guī)律,此外還考慮了瀝青面層與基層間的接觸狀況對(duì)結(jié)構(gòu)溫度應(yīng)力的影響。計(jì)算結(jié)果表明:瀝青路面的最大溫度應(yīng)力出現(xiàn)在路表面,若最大溫度應(yīng)力超過(guò)瀝青混合料本身的極限抗拉強(qiáng)度,將在路表面出現(xiàn)溫縮裂縫;降溫幅度越大,結(jié)構(gòu)內(nèi)產(chǎn)生的溫度應(yīng)力也越大;面層厚度的增加可以減小溫度應(yīng)力,但是影響效果并不明顯;瀝青面層勁度模量的變化對(duì)路表面、上面層層底與下面層層底溫度應(yīng)力的影響比較明顯,隨著模量的增加,溫度應(yīng)力也隨著增大,而對(duì)基層層底與底基層層底溫度應(yīng)力的影響并不大;當(dāng)瀝青面層溫縮系數(shù)增加時(shí),路表面、上面層層底與下面層層底的溫度應(yīng)力都隨著增大,最大溫度應(yīng)力基本都增加了原來(lái)的一半,而基層層底與底基層層底的溫度應(yīng)力變化不大;基層厚度及模量的變化對(duì)結(jié)構(gòu)溫度應(yīng)力的影響非常;利用接觸單元模擬層間非連續(xù)接觸狀態(tài),當(dāng)下面層與基層之間接觸狀態(tài)不同時(shí),在接觸狀態(tài)不同處溫度應(yīng)力的變化非常明顯,由于接觸模型受力響應(yīng)更符合道路的實(shí)際工作狀態(tài),所以在進(jìn)行瀝青路面結(jié)構(gòu)設(shè)計(jì)時(shí)建議采用接觸模型進(jìn)行分析。 最后,在考慮瀝青路面溫縮裂縫不同影響因素的基礎(chǔ)上,,根據(jù)不同影響因素對(duì)路面溫度應(yīng)力的分析,提出預(yù)測(cè)瀝青混凝土路面溫縮裂縫間距的方法。通過(guò)有限元分析計(jì)算可知,道路所處環(huán)境降溫幅度越大,瀝青路面的裂縫間距越;瀝青面層及基層厚度的增加可以減小裂縫間距,但是貢獻(xiàn)不大;隨瀝青面層模量的增加,裂縫間距縮短;隨瀝青面層溫縮系數(shù)的增加,裂縫間距逐漸縮短;基層模量變化時(shí),裂縫間距不變。因此可以看出,瀝青路面的開(kāi)裂與否不僅與材料本身的性質(zhì)有關(guān),而且還與道路結(jié)構(gòu)情況相關(guān)。
[Abstract]:The phenomenon of asphalt concrete pavement cracking at low temperature is very common in the cold area of northern China. After a cold winter, the transverse cracks often appear on the road surface according to the distance between them. This phenomenon also occurs frequently in other cold regions of the world. The occurrence of cracks provides favorable conditions for water to enter the road structure, thus leading to a significant decrease in the bearing capacity and service life of the road structure. So it is very important to analyze the temperature stress of asphalt concrete pavement in cold area. Firstly, according to the measured temperature value of engineering section, the temperature field distribution of road structure along the depth direction is simulated by finite element software ANSYS, and the temperature gradient of structure layer is calculated at the same time. The results show that the greater the temperature difference between the road surface and the bottom of the soil foundation, the greater the temperature gradient in the structure, the smaller the absolute value of the temperature gradient with the increase of road depth, and the more positive the temperature gradient of the structure layer is in summer and autumn. In winter, the temperature gradient of the structure layer is negative. Then, on the basis of reference to a large number of domestic and foreign literatures and research results, a three-dimensional finite element model of thermal-structure coupling for asphalt concrete road at low temperature is established, and the temperature reduction range is analyzed. The influence of asphalt concrete surface and base course parameters on the temperature stress of asphalt pavement is also considered. In addition, the influence of the contact between asphalt surface and base on the structure temperature stress is also considered. The results show that the maximum temperature stress of the asphalt pavement appears on the road surface. If the maximum temperature stress exceeds the ultimate tensile strength of the asphalt mixture itself, there will be temperature shrinkage cracks on the road surface. The larger the temperature stress is in the structure, the more the thickness of the surface layer can reduce the temperature stress, but the effect is not obvious. The influence of the temperature stress on the top bottom and the bottom layer is obvious. With the increase of the modulus, the temperature stress also increases, but the effect on the temperature stress of the base layer and the bottom layer is not great; when the temperature shrinkage coefficient of the asphalt surface increases, On the road surface, the temperature stress of the top layer bottom and the bottom layer increases with the increase, and the maximum temperature stress basically increases by half of the original, but the temperature stress of the base layer and the bottom of the bottom layer do not change much. The influence of the thickness and modulus of the base layer on the temperature stress of the structure is very small, the contact element is used to simulate the discontinuous contact state between the layers, and the contact state between the current surface layer and the base layer is different. The change of temperature stress in different contact state is very obvious. Because the stress response of the contact model is more in line with the actual working state of the road, it is suggested that the contact model should be used in the design of asphalt pavement structure. Finally, on the basis of considering the different factors affecting the temperature shrinkage crack of asphalt pavement, according to the analysis of different influencing factors to the temperature stress of the pavement, the method of predicting the space between the temperature shrinkage cracks of asphalt concrete pavement is put forward. The results of finite element analysis show that the larger the cooling range of the road is, the smaller the crack spacing of asphalt pavement is, the smaller the crack spacing is with the increase of the thickness of asphalt surface and the base course, but the less contribution is made; with the increase of asphalt surface modulus, The crack spacing is shortened with the increase of temperature shrinkage coefficient of asphalt surface, and the crack spacing is not changed when the base modulus changes. Therefore, it can be seen that the cracking of asphalt pavement is not only related to the properties of the material itself, but also related to the road structure.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U416.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊成忠;瀝青混凝土路面非荷載性裂縫形成機(jī)理研究[J];城市道橋與防洪;2005年06期
2 周志剛,李宇峙;氣溫和交通荷載對(duì)低溫縮裂的影響[J];長(zhǎng)沙交通學(xué)院學(xué)報(bào);1996年01期
3 李俊,歐陽(yáng)偉,任松,劉雅香;瀝青路面低溫開(kāi)裂性能分析[J];東北公路;2001年02期
4 董希斌;趙熙;;瀝青路面低溫開(kāi)裂的影響因素分析[J];東北林業(yè)大學(xué)學(xué)報(bào);2006年05期
5 余東坡,王魯軍;瀝青路面低溫開(kāi)裂問(wèn)題的探討[J];公路交通技術(shù);2004年02期
6 王[?,查旭東;瀝青路面低溫縮裂的分析與研究[J];國(guó)外公路;2000年06期
7 孫孝峰;錄慧麗;張慶杰;;有限元法在瀝青路面溫度場(chǎng)研究中的應(yīng)用[J];中外公路;2011年02期
8 姜鐵;張春剛;王海玲;張吉哲;孟凡宇;;瀝青路面低溫開(kāi)裂問(wèn)題的探討[J];建材世界;2010年05期
9 姜波,成剛,鄧俊勝;瀝青路面低溫縮裂的原因分析及減輕裂縫措施[J];黑龍江交通科技;2001年05期
10 徐覓;;瀝青路面低溫開(kāi)裂問(wèn)題的探討[J];黑龍江交通科技;2011年07期
本文編號(hào):1968340
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1968340.html