天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

濾波技術(shù)在沈陽地鐵變形監(jiān)測數(shù)據(jù)處理中的應(yīng)用研究

發(fā)布時間:2018-04-15 21:38

  本文選題:變形監(jiān)測 + 自動化; 參考:《沈陽建筑大學(xué)》2014年碩士論文


【摘要】:本文以沈陽中街人防工程為背景,對人防工程與地鐵重疊段進行變形監(jiān)測。因地鐵處于運營階段,采用自動化監(jiān)測系統(tǒng)——靜力水準(zhǔn)監(jiān)測系統(tǒng)進行實時監(jiān)測。但是該系統(tǒng)輸出的數(shù)據(jù),與人工二等水準(zhǔn)測量結(jié)果相比,數(shù)據(jù)跳動較大,存在17%——26%的誤差,需對監(jiān)測數(shù)據(jù)進行去噪處理。本文在VS2010下編寫濾波軟件,首先采用經(jīng)典卡爾曼濾波、自適應(yīng)卡爾曼濾波和小波濾波三種方法分別對監(jiān)測數(shù)據(jù)進行去噪處理,通過實驗結(jié)果發(fā)現(xiàn)經(jīng)典卡爾曼濾波能夠有效剔除掉的誤差為38%,自適應(yīng)卡爾曼濾波能夠有效剔除掉的誤差為55%,小波濾波能夠有效剔除掉的誤差為52%,三種方法單獨使用時都不能滿足剔除60%以上誤差的要求。針對這一問題,本文提出使用濾波模型組合技術(shù),根據(jù)單獨使用一種濾波方法時發(fā)現(xiàn)的特點,即:1、經(jīng)典卡爾曼濾波不適合長期使用;2、自適應(yīng)卡爾曼濾波在低頻部分有明顯優(yōu)勢;3、小波濾波在高頻部分有降噪效果明顯。進行濾波模型組合。根據(jù)濾波先后順序確定了四種濾波模型組合BCa1、BCa2、CalB和Ca2B,并由理論知識推測BCal降噪效果最好。通過工程實例的驗證,濾波模型組合方法在降噪效果方面優(yōu)于單獨使用一種濾波技術(shù),濾波模型組合方法能夠有效剔除掉65%——75%的誤差。其中濾波模型組合BCal降噪效果最好,能夠有效剔除掉75%的誤差,大大提高了自動化監(jiān)測數(shù)據(jù)的準(zhǔn)確性和可靠性,達到了預(yù)期有效剔除60%的誤差的目的,得出處理中街人防工程地鐵自動化監(jiān)測數(shù)據(jù)的最優(yōu)方法是濾波模型組合BCal。
[Abstract]:Based on the civil air defense engineering of Shenyang Central Street, deformation monitoring of overlapped section between civil air defense engineering and subway is carried out.Because the subway is in operation stage, the automatic monitoring system-static leveling monitoring system is used for real-time monitoring.However, the output data of the system is larger than the result of manual secondary leveling, and the error of 17% to 26% exists, so it is necessary to Denoise the monitoring data.In this paper, the filtering software is written under VS2010. Firstly, three methods of classical Kalman filter, adaptive Kalman filter and wavelet filter are used to Denoise the monitoring data.The experimental results show that the classical Kalman filter can effectively eliminate the error of 38 parts, the adaptive Kalman filter can effectively eliminate the error of 55 steps, the wavelet filter can effectively eliminate the error of 52 parts.The time can not meet the requirement of eliminating more than 60% error.In order to solve this problem, this paper proposes to use filter model combination technique, according to the characteristics found when a single filtering method is used.That is, the classical Kalman filter is not suitable for long-term use, adaptive Kalman filter has obvious advantages in the low frequency part and wavelet filter has obvious noise reduction effect in the high frequency part.Filter model combination is carried out.According to the sequence of filtering, four filtering models, BCA _ 1C _ (2) Ca _ (2) CalB and Ca _ (2) B _ (2) B, are determined, and it is inferred from the theoretical knowledge that BCal has the best effect on noise reduction.Through the verification of engineering examples, the filter model combination method is superior to one kind of filtering technique in noise reduction effect, and the filter model combination method can effectively eliminate the error of 65% to 75%.The filter model combined with BCal has the best denoising effect and can eliminate 75% of the error effectively, which greatly improves the accuracy and reliability of the automatic monitoring data, and achieves the goal of eliminating 60% of the expected error effectively.It is concluded that the optimal method to deal with the subway automatic monitoring data of civil air defense engineering in the middle street is the combination of filter model and BCal.
【學(xué)位授予單位】:沈陽建筑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U456.3;U231.3

【相似文獻】

相關(guān)期刊論文 前4條

1 雒文生,徐高洪;系統(tǒng)濾波模型在滇池水質(zhì)預(yù)測中的應(yīng)用[J];水文;1997年02期

2 許阿裴;歸慶明;韓松輝;;Kalman濾波模型中三種殘差的比較[J];黑龍江工程學(xué)院學(xué)報;2008年02期

3 陳麗;賈云獻;牛曉磊;;基于經(jīng)典貝葉斯方法的濾波模型參數(shù)估計[J];系統(tǒng)仿真學(xué)報;2008年23期

4 ;[J];;年期

相關(guān)碩士學(xué)位論文 前4條

1 宓慶華;一族保邊方向偏微分方程濾波模型及應(yīng)用研究[D];天津大學(xué);2014年

2 張春哲;濾波技術(shù)在沈陽地鐵變形監(jiān)測數(shù)據(jù)處理中的應(yīng)用研究[D];沈陽建筑大學(xué);2014年

3 甘雨;基于時頻特性分析的INS誤差處理及組合導(dǎo)航系統(tǒng)濾波模型精化[D];解放軍信息工程大學(xué);2012年

4 楊娜;空間域保邊濾波方法及在核級石墨三點彎曲實驗中的應(yīng)用[D];天津大學(xué);2013年

,

本文編號:1755911

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1755911.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶13b17***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com