主梁型TBM推進機構(gòu)力傳遞特性分析
本文選題:推進機構(gòu) 切入點:偏載 出處:《華東交通大學》2014年碩士論文
【摘要】:全斷面巖石隧道掘進機(簡稱TBM)關(guān)鍵子部件是推進機構(gòu),該裝備工作于惡劣環(huán)境下的重載荷、大突變載荷及強烈振動載荷。若力傳遞均布性不好,容易引起偏載現(xiàn)象,必將導致推進機構(gòu)的力分布異構(gòu),即其中某一個關(guān)節(jié)力過大,則容易造成油缸承擔力過大,出現(xiàn)關(guān)節(jié)力極大的現(xiàn)象時,短期之內(nèi),只會影響推進油缸的工作壽命,長期處于極端的現(xiàn)象必將導致推進油缸的工作壽命變短;另外,作用在刀盤上的力分布不均,刀盤局部受力大,刀具損壞可能性大大增加,易于造成管片破裂、破損、錯臺。本文以主梁型TBM推進機構(gòu)為研究對象,結(jié)合機器人機構(gòu)學理論、并聯(lián)機構(gòu)的運動學及機構(gòu)運動微分關(guān)系,主要開展了以下幾個方面的研究: 1.闡述課題的研究背景和意義,綜述國內(nèi)外全斷面巖石隧道掘進機、推進機構(gòu)和力傳遞性能研究現(xiàn)狀,并提出主要的研究內(nèi)容。 2.通過對主梁型TBM在掘進過程中向前掘進的受力分析,歸納出推進機構(gòu)必須克服的三個主要阻力,構(gòu)建出推進機構(gòu)力學模型,為后續(xù)推進機構(gòu)力傳遞均布性分析提供了理論基礎。引入力傳遞均布性的概念,再結(jié)合標準差公式來建立推進機構(gòu)力傳遞均布特性評價指標。 3.運用SolidWorks建立了主梁型TBM的三維模型,再通過CAD畫出其機構(gòu)運動簡圖,結(jié)合運動學理論及機器人的微分關(guān)系,研究了推進機構(gòu)位置和各構(gòu)件速度的通用表達式,得出其速度雅可比矩陣,為下一章分析奠定了理論基礎。 4.根據(jù)上章求出的雅克比矩陣,得到主梁型推進機構(gòu)的力雅可比陣計算公式。再利用MATLAB編程來對力傳遞均布性進行仿真分析,得出其主要影響參數(shù),并且通過均布性優(yōu)劣對應的關(guān)節(jié)力最大值的大小進行對比,驗證了評價指標的合理性。 5.基于分析力傳遞均布性的基礎上,將以力傳遞均布性最優(yōu)為目標,構(gòu)建優(yōu)化函數(shù),對推進機構(gòu)的結(jié)構(gòu)尺寸參數(shù)進行優(yōu)化,并給出MATLAB工具箱中的遺傳算法的優(yōu)化設計實例。
[Abstract]:The key sub-component of the full section rock tunnel tunneling machine (TBM) is the propulsion mechanism, which works in the heavy load, the large abrupt load and the strong vibration load under the harsh environment.If the distribution of force transfer is not good, it is easy to cause the phenomenon of eccentric load, which will lead to the heterogeneity of the force distribution of the propulsion mechanism, that is, if one of the joint forces is too large, it is easy to cause the excessive bearing force of the cylinder and the phenomenon of great joint force in the short term.It will only affect the working life of the propulsion cylinder, and the long-term extreme phenomenon will lead to the shortening of the working life of the propulsion cylinder. In addition, the forces acting on the cutter head are unevenly distributed, the local force on the cutter head is large, and the possibility of tool damage is greatly increased.Easy to cause segment rupture, breakage, stagger.In this paper, the main beam type TBM propulsion mechanism as the research object, combined with the robot mechanism theory, parallel mechanism kinematics and kinematic differential relationship, mainly carried out the following aspects of research:1.This paper expounds the research background and significance of the subject, summarizes the present research situation of full-section rock tunnel tunneling machine, propulsion mechanism and force transfer performance at home and abroad, and puts forward the main research contents.2.Through the force analysis of forward driving of main beam type TBM in the process of driving, the three main resistance that must be overcome by propulsion mechanism are summarized, and the mechanical model of propulsion mechanism is constructed, which provides a theoretical basis for the analysis of force transfer uniformity of subsequent propulsion mechanism.In this paper, the concept of force transfer uniformity is introduced, and the evaluation index of force transfer uniformity is established by combining the standard deviation formula.3.The three-dimensional model of the main beam type TBM is established by using SolidWorks, and then the kinematic diagram of the mechanism is drawn by CAD. Combined with the kinematics theory and the differential relation of the robot, the general expressions of the position of the propulsion mechanism and the velocity of each component are studied.The velocity Jacobian matrix is obtained, which lays a theoretical foundation for the next chapter.4.According to the Jacobian matrix obtained in the previous chapter, the force Jacobian matrix calculation formula of the main beam type propulsion mechanism is obtained.Then MATLAB programming is used to simulate and analyze the force transfer uniformity, and the main influence parameters are obtained, and the rationality of the evaluation index is verified by comparing the joint force maximum value corresponding to the uniform distribution.5.Based on the analysis of the force transfer uniformity, the optimization function is constructed to optimize the structural dimension parameters of the propulsion mechanism, and the optimization design example of the genetic algorithm in the MATLAB toolbox is given.
【學位授予單位】:華東交通大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U455.31
【參考文獻】
相關(guān)期刊論文 前10條
1 莊欠偉,龔國芳,楊華勇,周華;盾構(gòu)液壓推進系統(tǒng)結(jié)構(gòu)設計[J];工程機械;2005年03期
2 施虎;龔國芳;楊華勇;蘇健行;;隧道盾構(gòu)掘進機推進系統(tǒng)設計[J];工程機械;2008年07期
3 譚忠盛;洪開榮;萬姜林;王夢恕;;軟硬不均地層盾構(gòu)姿態(tài)控制及管片防裂損技術(shù)[J];中國工程科學;2006年12期
4 金振林,高峰;6-SPS球平臺并聯(lián)機器人及其局部力和運動傳遞性能分析[J];光學精密工程;2001年01期
5 胡國良,龔國芳,楊華勇,徐兵;盾構(gòu)模擬試驗平臺液壓推進系統(tǒng)設計[J];機床與液壓;2005年02期
6 汪勁松,王忠華,黃田,D.J.Whitehouse;Gough-Stewart平臺微分運動特性分析與綜合[J];中國科學E輯:技術(shù)科學;2001年05期
7 鄭志敏;;盾構(gòu)推進系統(tǒng)設計[J];隧道建設;2006年04期
8 席平原;應用MATLAB工具箱實現(xiàn)機械優(yōu)化設計[J];機械設計與研究;2003年03期
9 李鷺揚,吳洪濤;并聯(lián)機器人力傳遞性能分析[J];機械科學與技術(shù);2005年10期
10 賈連輝;陳饋;;盾構(gòu)推進系統(tǒng)的設計與控制分析[J];建筑機械化;2009年02期
相關(guān)博士學位論文 前1條
1 鄧孔書;土壓平衡盾構(gòu)推進系統(tǒng)特性及布局優(yōu)化設計研究[D];清華大學;2010年
,本文編號:1704289
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1704289.html