系桿拱橋施工關(guān)鍵技術(shù)優(yōu)化研究
本文選題:減隔震 切入點(diǎn):鋼支架 出處:《長安大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:本文以國內(nèi)最寬、首次應(yīng)用分隔式減隔震支撐技術(shù)的陜西省西安市秦漢大道灞河橋(系桿拱橋)為背景,對常用橋梁關(guān)鍵施工技術(shù)進(jìn)行優(yōu)化研究,具體研究措施和意義如下: 鑒于近年來地震頻發(fā),工程領(lǐng)域越來越注重抗震設(shè)計,本橋采用減隔震體系(中墩采用雙排鉛芯橡膠支座與盆式橡膠支座組成分離式隔震系統(tǒng),邊墩采用粘滯流體阻尼器作為減震系統(tǒng))并結(jié)合多種常用抗震措施,有效地減少了橋墩的斷面尺寸,合理的降低了地震高烈度區(qū)橋梁的造價成本。 采用邁達(dá)斯軟件建立支架三維有限元模型進(jìn)行空間分析、模擬設(shè)計驗(yàn)算,在傳統(tǒng)的支架體系中加入穩(wěn)定性強(qiáng)、互換性好、適應(yīng)范圍廣的模數(shù)式鋼支撐,形成施工中一套實(shí)用萬能多變的鋼支撐體系,大大的增加了支架體系的剛度、強(qiáng)度和穩(wěn)定性,解決了跨徑大、結(jié)構(gòu)高、地形條件復(fù)雜的結(jié)構(gòu)施工支架問題。 通過自平衡技術(shù)承載力試驗(yàn)驗(yàn)證,得知后壓漿樁基承載力比非后壓漿樁基承載力提高"f38.1%,后壓漿施工技術(shù)得到了肯定,后壓漿樁基在降低樁長和樁徑的情況下,有效的保證了樁基承載能力,也為一般樁基后期質(zhì)量缺陷修復(fù)提供了技術(shù)借鑒和處理方法。 大跨徑預(yù)應(yīng)力結(jié)構(gòu)施工一直存在著穿束、張拉和壓漿等技術(shù)難以控制的問題,本橋采用吊車、卷揚(yáng)機(jī)配合人工穿束,二次張拉工藝確保張拉伸長值符合規(guī)范要求,通過對比試驗(yàn),選擇成品灌漿料代替常規(guī)水泥漿進(jìn)行壓漿,取得了良好的施工效果。 在拱腳壓注混凝土施工方面,該橋拱腳以下部分直接灌入混凝土,振搗棒振搗,拱腳兩邊以上部分只壓注到第一根吊桿下,其它部位不壓注,使鋼拱自身重心降低,同時采用搭設(shè)鋼管支架固定壓注管道的施工方法有效保障了施工安全同時也保證了施工質(zhì)量。 施工中改變了原設(shè)計的三節(jié)段吊裝方案,采用五節(jié)段加工、制作與吊裝技術(shù),圓滿完成了施工,,取得在吊裝重量、吊裝跨度、吊裝高度的大大提高的工程領(lǐng)域的大膽嘗試經(jīng)驗(yàn),成為了在吊裝施工作業(yè)領(lǐng)域的一大突破。
[Abstract]:In this paper, based on the widest in China and the first application of isolated isolation support technology, Qinhanda Bahe Bridge (tied arch bridge) in Xi'an City, Shaanxi Province, as the background, the key construction techniques of common bridges are optimized and studied. The specific research measures and significance are as follows:. In view of the frequent earthquakes in recent years, more and more attention has been paid to seismic design in the engineering field. The isolation system is adopted in this bridge. The isolation system is composed of double row lead rubber bearing and basin type rubber bearing in the middle pier. The side pier adopts viscous fluid damper as the shock absorber system) and combined with a variety of commonly used seismic measures effectively reduces the section size of the pier and reasonably reduces the cost of the bridge in the high seismic intensity area. The three-dimensional finite element model of the support was established by using Midas software to carry out spatial analysis, the simulation design was checked, and the modular steel support with strong stability, good interchangeability and wide adaptability was added to the traditional support system. A set of practical universal and changeable steel support system is formed in the construction, which greatly increases the stiffness, strength and stability of the support system, and solves the construction support problem of long span, high structure and complicated terrain conditions. Through self-balancing technology bearing capacity test, it is known that the bearing capacity of post-grouting pile foundation is higher than that of non-post-grouting pile foundation "f38.1. the construction technology of post-grouting pile is affirmed, and the post-grouting pile foundation can reduce the length and diameter of pile." It can effectively guarantee the bearing capacity of pile foundation, and also provide technical reference and treatment method for repairing the quality defects in the later stage of pile foundation. In the construction of long span prestressed structure, it is always difficult to control the technology of straining, tensioning and grouting, etc. The bridge adopts crane, hoist and artificial beam piercing, and the secondary tensioning technology ensures that the tensioning elongation value meets the requirements of the specifications. Through the contrast test, the finished grouting material was selected instead of the conventional cement slurry to press the slurry, and the good construction effect was obtained. In the construction of concrete under the arch foot, the concrete is poured directly below the arch foot of the bridge, and the vibrating rod is vibrated and vibrated. The above part of the arch foot is only pressed under the first suspender, and the other parts are not pressed, so that the center of gravity of the steel arch itself is reduced. At the same time, the construction method of fixed pressure injection pipe with steel pipe support is used to ensure the construction safety and the construction quality. In the construction, the original design of the three-segment hoisting scheme has been changed, and the five-section processing, manufacture and hoisting technology have been adopted, the construction has been successfully completed, and the hoisting weight and the hoisting span have been obtained. The bold attempt experience in the field of hoisting has become a breakthrough in the field of hoisting construction.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U445.4;U448.225
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉明軍;林志軍;;田安大橋支架鋼管樁設(shè)計與施工[J];城市道橋與防洪;2012年04期
2 劉建;王星華;張克波;張玉平;;橋梁鉆孔灌注樁豎向承載力試驗(yàn)研究[J];長沙交通學(xué)院學(xué)報;2005年04期
3 何朝奇;;廣州新光大橋邊拱拱肋拼裝支架施工方案[J];中外公路;2006年04期
4 陳澤江;;永和大道跨線橋現(xiàn)澆預(yù)應(yīng)力混凝土連續(xù)箱梁滿堂支架設(shè)計及驗(yàn)算[J];城市道橋與防洪;2012年09期
5 程秉坤;林春偉;;基樁自平衡測試技術(shù)應(yīng)用探討[J];廣西城鎮(zhèn)建設(shè);2008年12期
6 余啟志;陳竹君;;斜拉橋索力測試方法綜述[J];湖北農(nóng)機(jī)化;2008年04期
7 譚洪亮;趙鵬宇;;大直徑樁樁頂加載自錨式測樁法[J];黑龍江科技信息;2008年02期
8 楊濤;張浙杭;金玉;;舟山大跨越海中基礎(chǔ)灌注樁自平衡法試驗(yàn)研究[J];山西建筑;2010年35期
9 楊相展;;基于隔振設(shè)計的連續(xù)梁橋抗震分析[J];北方交通;2012年04期
10 徐秀麗;李雪紅;劉偉慶;王曙光;王滋軍;;大型減隔震橋梁結(jié)構(gòu)分析方法[J];南京工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2009年01期
本文編號:1574040
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1574040.html