帶狀城市群公交線路設(shè)計(jì)與票價(jià)測(cè)算研究
本文關(guān)鍵詞: 帶狀城市群 公交線路 公交票價(jià) 非線性整數(shù)規(guī)劃 雙層規(guī)劃 出處:《華南理工大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:我國(guó)的城市群正處于發(fā)展階段,探討城市群規(guī)劃中的公共交通問(wèn)題對(duì)城市群交通系統(tǒng)的完善有重要意義。本研究從公交運(yùn)營(yíng)成本與乘客出行成本構(gòu)成的總成本之和最小的目標(biāo)出發(fā)研究公交線路的最優(yōu)設(shè)計(jì);從公共交通運(yùn)營(yíng)者的收益最大和乘客的廣義出行成本最小的角度研究最優(yōu)票價(jià)的測(cè)算。 本文以呈帶狀形態(tài)的城市群為背景,假設(shè)公交運(yùn)營(yíng)符合現(xiàn)狀的交通政策,利用數(shù)學(xué)規(guī)劃思想,,以總成本最小為目標(biāo)函數(shù),公交發(fā)車(chē)頻率為決策變量,以城市間設(shè)計(jì)的公交線路對(duì)稱(chēng)、發(fā)車(chē)間隔不超過(guò)最大設(shè)定值、車(chē)輛容量限制、斷面流量限制及發(fā)車(chē)頻率為非負(fù)整數(shù)為約束條件,建立非線性整數(shù)規(guī)劃模型TOR。該模型應(yīng)用的前提條件是,帶狀城市群有唯一的線性運(yùn)輸走廊,不同城市間的居民出行OD矩陣,車(chē)輛運(yùn)行速度、運(yùn)行時(shí)間,乘客時(shí)間價(jià)值,公交企業(yè)單位運(yùn)營(yíng)成本及折舊成本已知。根據(jù)該模型計(jì)算得到的發(fā)車(chē)頻率是否為零,作為任意兩個(gè)城市間是否設(shè)置公交線路的依據(jù),根據(jù)計(jì)算的整個(gè)城市群所有城市間發(fā)車(chē)頻率得到最優(yōu)的公交線路。文章應(yīng)用優(yōu)化軟件Lingo求解基于TOR模型的數(shù)值算例,結(jié)果表明該模型的提出在理論上可行并有應(yīng)用潛力。 在路線設(shè)計(jì)的基礎(chǔ)上,本文以公交運(yùn)營(yíng)者的收益最大和乘客廣義成本最小為目標(biāo)建立雙層規(guī)劃模型,其中上層模型以公交票價(jià)為決策變量,以票價(jià)調(diào)整幅度為約束條件,下層模型基于隨機(jī)用戶(hù)均衡模型構(gòu)建,以不同路線的客流量為決策變量,以路段容量限制為約束條件。論文證明了構(gòu)建的雙層規(guī)劃模型解的存在性和唯一性,運(yùn)用敏感度分析方法求解數(shù)值算例獲得最優(yōu)票價(jià)。研究表明,此項(xiàng)研究工作可用于實(shí)際工作中的票價(jià)調(diào)整。 本論文首次從理論上針對(duì)帶狀城市群公交線路的設(shè)計(jì)問(wèn)題與合理票價(jià)制定問(wèn)題分別提出模型與求解方法。研究表明論文提出的模型與方法在理論上可行。論文的算例結(jié)果進(jìn)一步表明,本研究成果可以直接為城市群公交線路規(guī)劃與最優(yōu)設(shè)計(jì),票價(jià)調(diào)整及運(yùn)營(yíng)調(diào)度工作提供決策依據(jù)。
[Abstract]:China's urban agglomerations are at a stage of development. It is very important for the improvement of urban agglomeration transportation system to discuss the public transportation problem in the planning of urban agglomeration. This study studies the optimal design of public transportation line from the goal of the minimum sum of total cost of public transport operation cost and passenger travel cost. This paper studies the calculation of the optimal ticket price from the angle of the public transport operator's maximum income and the passenger's generalized travel cost minimization. In this paper, taking the urban agglomeration in the form of banding as the background, assuming that the public transport operation conforms to the current traffic policy, using the idea of mathematical planning, taking the minimum total cost as the objective function, the frequency of bus departure as the decision variable. The constraints are that the bus lines designed between cities are symmetrical, the departure interval is not more than the maximum set value, the vehicle capacity is limited, the cross-section flow limit and the departure frequency are non-negative integer. A nonlinear integer programming model, Torr, is established. The prerequisite for the application of this model is that the belt urban agglomeration has a unique linear transportation corridor, the OD matrix of residents travel between different cities, the speed of vehicles, the running time, the value of passenger time, and so on. The unit operating cost and depreciation cost of public transport enterprises are known. Whether the departure frequency is zero or not is calculated according to the model, which is the basis of whether or not to set up bus lines between any two cities. According to the calculated departure frequency of all cities in the urban agglomeration, the optimal bus route is obtained. The numerical example based on TOR model is solved by the optimization software Lingo. The results show that the proposed model is feasible in theory and has application potential. On the basis of route design, this paper sets up a bilevel programming model aiming at the maximum profit of bus operators and the minimum generalized cost of passengers, in which the upper layer model takes bus fare as decision variable and the range of fare adjustment as constraint condition. The lower layer model is based on the stochastic user equilibrium model, taking the passenger flow of different routes as the decision variable and the section capacity restriction as the constraint condition. The existence and uniqueness of the solution of the bilevel programming model are proved in this paper. The sensitivity analysis method is used to solve the numerical example to obtain the optimal ticket price. The research shows that the research work can be used to adjust the ticket price in the actual work. For the first time in this paper, the model and the solution method are proposed for the design of bus routes and the reasonable fares of the urban agglomeration respectively. The research shows that the models and methods proposed in this paper are feasible in theory. The results of an example show that, The research results can provide decision basis for bus route planning and optimal design, fare adjustment and operation scheduling of urban agglomeration.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U491.17
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王殿海,吳娟,栗紅強(qiáng);典型線路公共汽車(chē)票價(jià)確定方法研究[J];公路交通科技;2000年06期
2 陳茜,牛學(xué)勤,陳學(xué)武,王煒;公交線路發(fā)車(chē)頻率優(yōu)化模型[J];公路交通科技;2004年02期
3 胡賽陽(yáng);賀寒輝;李嘉;;基于公交走廊規(guī)劃的中小城市公交引導(dǎo)發(fā)展研究[J];中外公路;2013年03期
4 吳文化;單連龍;劉斌;崔鳳安;向愛(ài)兵;鄒斯林;;城市群客運(yùn)交通發(fā)展的基本特征及系統(tǒng)框架研究[J];宏觀經(jīng)濟(jì)研究;2010年04期
5 杜祜康;趙英凱;;整數(shù)規(guī)劃問(wèn)題智能求解算法綜述[J];計(jì)算機(jī)應(yīng)用研究;2010年02期
6 趙毅;鐘聲;;基于遺傳算法的城市公交路線優(yōu)化問(wèn)題[J];計(jì)算機(jī)工程與科學(xué);2012年09期
7 王佳;符卓;杜靖毅;;基于遺傳算法的城市公交骨架線網(wǎng)優(yōu)化設(shè)計(jì)[J];計(jì)算機(jī)應(yīng)用研究;2012年12期
8 高自友,四兵鋒;市場(chǎng)競(jìng)爭(zhēng)條件下鐵路旅客票價(jià)制定的模型與算法[J];交通運(yùn)輸系統(tǒng)工程與信息;2001年01期
9 王鏡;邵春福;;深圳市公交票價(jià)體系改革研究[J];綜合運(yùn)輸;2008年01期
10 程琳;于春青;邱松林;;隨機(jī)型用戶(hù)均衡網(wǎng)絡(luò)的敏感度分析[J];中國(guó)公路學(xué)報(bào);2008年02期
本文編號(hào):1508876
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1508876.html