考慮地基影響的高橋墩穩(wěn)定及水平位移實(shí)用計(jì)算方法
本文關(guān)鍵詞:考慮地基影響的高橋墩穩(wěn)定及水平位移實(shí)用計(jì)算方法 出處:《長安大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 高墩 穩(wěn)定性 計(jì)算長度 墩頂水平位移 橋墩類型
【摘要】:本學(xué)位論文以中交集團(tuán)特大科技研發(fā)項(xiàng)目《山嶺區(qū)資源節(jié)約型高速公路建設(shè)關(guān)鍵技術(shù)研究》的子課題《山區(qū)橋梁高墩形式比選及穩(wěn)定性研究》為背景,,旨在通過高橋墩穩(wěn)定性分析及水平位移理論方法,尋求影響高橋墩穩(wěn)定性的敏感性參數(shù)及內(nèi)在規(guī)律,建立考慮地基影響的高橋墩穩(wěn)定及水平位移實(shí)用計(jì)算方法;并以有限元分析、室內(nèi)模型試驗(yàn)研究和依托工程現(xiàn)場監(jiān)測為手段,驗(yàn)證分析高墩穩(wěn)定性、計(jì)算長度和墩頂水平位移的計(jì)算方法。 本文指出穩(wěn)定計(jì)算和水平位移計(jì)算問題在高墩橋梁設(shè)計(jì)中具有重要意義,特別是在計(jì)算長度系數(shù)對偏心距增大系數(shù)影響較大,而我國現(xiàn)行橋梁規(guī)范有關(guān)條文相比英、美規(guī)范較為粗略,且取值未包含“偏保守采用值”。同時(shí),墩頂水平位移的計(jì)算至今在多種計(jì)算方法之間還存在較大出入。 本文回顧了橋墩穩(wěn)定、水平位移和墩型比選的發(fā)展及研究現(xiàn)狀,梳理了橋墩的分類形式,介紹了多種橋型中橋墩或橋塔的基本情況。調(diào)研了我國近年建成的6條不同地域山區(qū)高速公路中高橋墩的應(yīng)用情況,統(tǒng)計(jì)分析了213座橋梁中817個(gè)高墩樣本,總結(jié)了4種較常見橋墩墩型的適用高度區(qū)間。 本文基于能量原理,推導(dǎo)了高橋墩在施工階段自重以及運(yùn)營階段墩頂集中豎向荷載作用下臨界穩(wěn)定荷載的近似求解公式。分析了四種橋墩在不同截面參數(shù)、不同墩高條件下的穩(wěn)定性,結(jié)果顯示各墩型一階穩(wěn)定安全系數(shù)50~60米范圍內(nèi)降低較快,60~90米降幅區(qū)域平緩;薄壁空心墩穩(wěn)定安全系數(shù)明顯高于其他三類墩型,尤其是在60~90米區(qū)間范圍內(nèi)其穩(wěn)定性優(yōu)勢明顯。基于有限元法,對依托工程進(jìn)行了兩類穩(wěn)定分析,結(jié)果顯示:考慮二類非線性影響時(shí),計(jì)算結(jié)果都比特征值低,說明線性穩(wěn)定分析求得的結(jié)果不保守,是極限承載力的上限;非線性穩(wěn)定分析結(jié)果得到的穩(wěn)定安全系數(shù)均大于1.58,滿足穩(wěn)定安全要求;系梁設(shè)置數(shù)量對算例中雙柱式墩的面內(nèi)穩(wěn)定并非呈單調(diào)增長。 本文研究了不同邊界約束條件下高墩的計(jì)算長度,提出了不同狀態(tài)下高墩計(jì)算長度系數(shù)的計(jì)算方法?紤]橋墩的幾何非線性,推導(dǎo)了橋墩不同邊界條件下一階失穩(wěn)臨界力的計(jì)算公式,并利用歐拉公式得到其計(jì)算長度系數(shù)。其中,本文公式在彈性地基裸墩施工階段、成橋運(yùn)營階段剛性地基狀況下、成橋運(yùn)營階段彈性地基狀況下計(jì)算值與規(guī)范規(guī)范規(guī)定值相比,偏差均小于1%。 本文給出了不同邊界約束條件下高墩受力變形的形函數(shù),基于勢能駐值原理,針對墩頂位移進(jìn)行了分析。針對給出的墩身形函數(shù),研究了地基彈性約束條件、無墩頂約束等不同條件下墩頂水平位移的計(jì)算公式,并在該基礎(chǔ)上,給出了剛性基礎(chǔ)有墩頂約束時(shí),計(jì)算高墩墩頂水平位移的實(shí)用公式。 本文研究成果不但可在橋梁設(shè)計(jì)階段,為確定合理橋高范圍、橋墩形式以及受力狀態(tài)提供技術(shù)支持,還可為下一步規(guī)范有關(guān)條款的修訂工作提供依據(jù)。
[Abstract]:High pier form sub project of < mountain bridge in this thesis cccg large science and technology research and development project "construction in mountain area highway resource conservation research on key technology selection and stability of > > as the background, through the analysis of high pier stability and horizontal displacement theory, seeking to influence the stability of the high pier of the sensitive parameters and intrinsic rules a calculation method of high pier stability and horizontal displacement of foundation is considered practical effect; and the finite element analysis, indoor model test and on-site monitoring as a means of verification and analysis of high pier stability, calculation method of length and lateral displacement of pier.
This paper points out that the horizontal displacement calculation and stability calculation has important significance in the design of high pier bridge, especially in the calculation of the length coefficient on the coefficient of eccentricity is greatly affected, and our current bridge code provisions compared with British and American code is more rough, and the value is not included "conservative use value". At the same time, the larger the entry between pier top horizontal displacement has been in a variety of calculation methods.
This paper reviews the pier stability, horizontal displacement and pier type selection of research and development, combing the classification form of bridge piers, introduced the basic situation of bridge types of bridge pier or tower. Investigation of the high pier 6 different regional highway built in China in recent years, the application of statistical analysis, 817 a sample of 213 high pier bridges, summarizes the suitable height interval of 4 common pier type.
Based on the energy principle, deduces the approximate solution formula in high pier construction stage and operation stage of gravity pier top concentrated vertical load critical load. Analyze four piers in different parameters, the stability of different pier conditions. The results showed that each pier one order stability safety factor of 50 to 60 meters range in 60 ~ 90 meters decreased rapidly, fell flat region; the safety factor of stability of the thin-walled hollow pier is significantly higher than the other three types of piers, especially in the 60 to 90 meters range stability advantages. Based on the finite element method, based on the project of the two stability analysis, results showed that: considering two kinds of nonlinear effects when the calculation results are lower than the values, that the linear stability analysis result is not conservative, the ultimate bearing capacity of the upper limit; nonlinear stability analysis of the stability safety coefficients were greater than 1. 58, the stability and safety requirements are met, and the number of beam setting is not monotonous growth for the internal stability of the double column piers in the example.
This paper studies the different boundary conditions to calculate the length of the high pier, put forward a calculation method under different conditions of high pier calculation length coefficient. Considering the geometric nonlinearity of the pier, the pier is deduced under different boundary conditions of first order loss calculation formula of the critical buckling force, and the use of the Euler formula calculated length coefficient. Among them, the the formula in the stage of elastic foundation pier construction, bridge rigid foundation conditions, the operational phase of the bridge elastic foundation condition calculation value and standard deviation is less than the specified value compared to 1%.
The shape function is given in this paper. The different boundary condition of high pier deformation, based on the principle of minimum potential energy, the displacement of pier top are analyzed. Aiming at the pier shape function is given, the elastic constraints, no constraint on the top calculation formulas under different conditions of pier top displacement, and in based on this, given a rigid foundation pier top constraint, a practical formula for calculation of high pier top horizontal displacement.
The research results in this paper can not only provide technical support for determining the reasonable height of bridge, the form of pier and the state of stress in the bridge design stage, but also provide a basis for further revision of relevant clauses.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:U443.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程翔云;高橋墩設(shè)計(jì)計(jì)算中的兩個(gè)問題[J];重慶交通學(xué)院學(xué)報(bào);2000年02期
2 馬朝霞;陳思甜;龔尚龍;;高橋墩墩頂水平位移的計(jì)算與分析[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年06期
3 田仲初,程翔云;設(shè)置板式橡膠支座的高橋墩之非線性分析[J];重慶交通學(xué)院學(xué)報(bào);1998年02期
4 李運(yùn)生;閻貴平;王元清;張彥玲;;鐵路橋墩橫向剛度設(shè)計(jì)標(biāo)準(zhǔn)的研究[J];鐵道科學(xué)與工程學(xué)報(bào);2007年01期
5 劉海青;;單排樁柱墩壓桿的計(jì)算長度[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
6 李黎;廖萍;龍曉鴻;彭元誠;;薄壁高墩大跨度連續(xù)剛構(gòu)橋的非線性穩(wěn)定分析[J];工程力學(xué);2006年05期
7 程翔云;變截面高墩幾何非線性的數(shù)值法分析[J];公路;1996年06期
8 潘志炎,史方華;高橋墩穩(wěn)定性分析[J];公路;2004年09期
9 徐國平,鄧海;武漢陽邏長江大橋總體設(shè)計(jì)[J];公路;2004年10期
10 裴賓嘉;石勇;于志斌;楊定軍;羅洋;裴炳志;游峰;;荊岳長江大橋28號主墩特大型分離式雙壁鋼圍堰的下沉[J];公路;2008年03期
本文編號:1439912
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1439912.html