鋼管混凝土懸?guī)Ч皹蚴芰π阅苎芯?/H1>
發(fā)布時(shí)間:2018-01-11 14:11
本文關(guān)鍵詞:鋼管混凝土懸?guī)Ч皹蚴芰π阅苎芯?/strong> 出處:《福州大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 鋼管混凝土 懸?guī)Ч皹?/b> 設(shè)計(jì) 受力性能 施工監(jiān)控 有限元參數(shù)分析
【摘要】:拱橋和索橋的歷史悠久,利用二者各自的優(yōu)勢(shì),取長(zhǎng)補(bǔ)短組合形成的懸?guī)Ч皹?是近年來新出現(xiàn)的一種結(jié)構(gòu)形式。結(jié)合鋼管混凝土拱,提出鋼管混凝土懸?guī)Ч皹蛐聵蛐?降低了對(duì)基礎(chǔ)的要求,并將自錨式拱橋中受壓傳力斜桿簡(jiǎn)化成為橋臺(tái)的一部分,提高了結(jié)構(gòu)的利用效率,具有結(jié)構(gòu)受力合理、橋型輕巧美觀等優(yōu)點(diǎn)。為了解該橋型的力學(xué)特性和計(jì)算方法,本文開展了該橋型的設(shè)計(jì)計(jì)算、施工監(jiān)控和參數(shù)分析,主要工作與研究成果有:(1)開展一座鋼管混凝土懸?guī)Ч皹虻脑O(shè)計(jì)與計(jì)算分析,并按照國(guó)內(nèi)現(xiàn)行的規(guī)范規(guī)程對(duì)鋼管混凝土懸?guī)Ч皹虿煌芰?gòu)件或結(jié)構(gòu)進(jìn)行了驗(yàn)算。驗(yàn)算結(jié)果表明,設(shè)計(jì)橋梁結(jié)構(gòu)的受力性能均可滿足規(guī)范要求。(2)結(jié)合已有的懸?guī)蚝弯摴芑炷凉皹虻脑O(shè)計(jì)和建模思路,提出了適合于該橋型的建模方法。(3)開展了實(shí)橋的施工監(jiān)控。結(jié)果表明,各個(gè)主要施工工況下實(shí)測(cè)的拱肋撓度、應(yīng)力變化規(guī)律和有限元模型計(jì)算結(jié)果吻合較好,驗(yàn)證了該建模方法的正確性。(4)借鑒傳統(tǒng)橋梁施工預(yù)拱度設(shè)置方法,進(jìn)行鋼管混凝土懸?guī)Ч皹虻墓袄呓Y(jié)構(gòu)預(yù)拱度的設(shè)置。結(jié)果表明,鋼管拱肋成橋階段的線形與模型計(jì)算結(jié)果吻合較好,表明這種預(yù)拱度設(shè)置方法是合理可行的。(5)通過算例分析了國(guó)內(nèi)現(xiàn)行的規(guī)范規(guī)程規(guī)定的施工精度控制指標(biāo)對(duì)鋼管混凝土懸?guī)Ч皹虻匿摴芄袄叩倪m用性。結(jié)果表明,拱肋和懸?guī)У淖畲缶形偏位對(duì)橋梁結(jié)構(gòu)受力性能影響很小,說明其施工精度控制指標(biāo)可應(yīng)用于鋼管混凝土懸?guī)Ч皹颉?6)利用已驗(yàn)證過的有限元模型開展結(jié)構(gòu)設(shè)計(jì)參數(shù)分析。結(jié)果表明,隨著矢跨比增加,拱腳軸力、懸?guī)лS力和結(jié)構(gòu)對(duì)橋臺(tái)的推力均逐漸減。还袄咄鈨A角增大會(huì)降低拱結(jié)構(gòu)對(duì)懸?guī)ЫY(jié)構(gòu)的支撐作用,導(dǎo)致拱腳軸力和推力的下降,而懸?guī)лS力、懸?guī)c拱肋位移均有所增加,且拱肋外傾角度增加還會(huì)使得結(jié)構(gòu)的穩(wěn)定性降低,失穩(wěn)模態(tài)從面外失穩(wěn)變?yōu)槊鎯?nèi)失穩(wěn);提高拱結(jié)構(gòu)對(duì)懸?guī)ЫY(jié)構(gòu)的支撐比例對(duì)于減小拱肋位移、懸?guī)ё畲笪灰坪蛻規(guī)лS力也有較大的作用,但會(huì)使結(jié)構(gòu)對(duì)基礎(chǔ)的推力增大,可通過加大預(yù)張力來抵消這一不利影響;隨著橋面板厚度的增加,對(duì)于總體結(jié)構(gòu)的受力均產(chǎn)生不利影響,在壓應(yīng)力允許范圍內(nèi),宜采用高強(qiáng)輕薄的橋面板;懸?guī)ЫY(jié)構(gòu)鉸接和固結(jié)情形下對(duì)結(jié)構(gòu)受力的影響幾乎可以忽略;現(xiàn)澆懸?guī)О蹇蓽p小成橋的懸?guī)灰魄姨岣呓Y(jié)構(gòu)穩(wěn)定性。
[Abstract]:The arch bridge and the cable bridge have a long history. The sling arch bridge which is formed by the combination of the two advantages is a new structural form in recent years, combined with concrete filled steel tube arch. The new bridge type of concrete filled steel tubular suspension arch bridge is put forward, which reduces the requirement of foundation, and simplifies the oblique bar of pressure transmission in self-anchored arch bridge as a part of abutment, which improves the utilization efficiency of the structure and has reasonable structural force. In order to understand the mechanical characteristics and calculation method of the bridge type, the design calculation, construction monitoring and parameter analysis of the bridge type are carried out in this paper. The main work and research results are as follows: 1) the design and calculation of a concrete-filled steel tubular sling arch bridge is carried out. In accordance with the current domestic codes and regulations, the different members or structures of CFST sling arch bridge are checked and calculated. The results show that. The mechanical properties of the design bridge structure can meet the requirements of the code. 2) combined with the existing suspension bridge and concrete filled steel tube arch bridge design and modeling ideas. The construction monitoring of the bridge is carried out. The results show that the deflection of arch rib is measured under the main construction conditions. The stress variation law is in good agreement with the finite element model calculation results, which verifies the correctness of the modeling method. 4) the traditional bridge construction pre-arch setting method is used for reference. The results show that the alignment of steel tube arch ribbed bridge is in good agreement with the model calculation results. This method is reasonable and feasible. This paper analyzes the applicability of the construction precision control index of the current domestic code to the steel tube arch rib of the concrete-filled steel tubular sling arch bridge through a numerical example. The results show that the construction precision control index is applicable to the concrete filled steel tube arch bridge. The maximum linear deflection of arch rib and sling band has little effect on the behavior of bridge structure. It is shown that the construction precision control index can be applied to the concrete filled steel tube sling arch bridge. The structural design parameters are analyzed by using the verified finite element model. The results show that the axial force of the arch foot increases with the increase of the rise-span ratio. The axial force of suspension belt and the thrust of structure on abutment decrease gradually. The increase of external inclination angle of arch rib will reduce the supporting effect of arch structure on the sling structure, and lead to the decrease of axial force and thrust of arch foot, while the axial force of suspension band, suspension belt and arch rib displacement will increase. The stability of the structure will be decreased with the increase of the external inclination of the arch rib, and the instability mode will change from the out-of-plane instability to the in-plane instability. Increasing the support ratio of arch structure to sling band structure can reduce the displacement of arch rib, the maximum displacement of suspension band and the axial force of suspension band, but it will increase the thrust of the structure to the foundation. This adverse effect can be offset by increasing pretension; With the increase of the thickness of the bridge deck, the stress of the whole structure will be adversely affected. Within the range of compressive stress, it is advisable to adopt the high-strength and light-weight deck. In the case of hinged and consolidated sling structure, the influence on the stress of the structure can be almost ignored. The cast-in-place sling slab can reduce the suspension displacement of the bridge and improve the stability of the structure.
【學(xué)位授予單位】:福州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U441;U448.22
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范蕾;姚輝瑞;;白水河懸?guī)蚪Y(jié)構(gòu)分析與設(shè)計(jì)[J];山東交通科技;2009年06期
2 胡柏學(xué),陳建平;懸?guī)蛟O(shè)計(jì)與施工[J];中南公路工程;1990年01期
3 唐忠平;賈輝;;懸?guī)蛴米鞔罂鐝綐蛄旱目尚行苑治鯷J];浙江工商職業(yè)技術(shù)學(xué)院學(xué)報(bào);2007年02期
4 湯崇儀;;懸?guī)騕J];國(guó)外公路;1983年03期
5 肖邦漢;用新材料加勁的懸?guī)?板索橋)的施工及有關(guān)試驗(yàn)[J];國(guó)外橋梁;1994年03期
6 董明;預(yù)應(yīng)力混凝土懸?guī)蚪Y(jié)構(gòu)的分析計(jì)算方法[J];云南工業(yè)大學(xué)學(xué)報(bào);1995年02期
7 莊影毓,王瑋瑤,陳科昌;懸?guī)虻臉蛐头桨秆芯縖J];上海公路;1998年01期
8 ;沒有采用地錨的懸?guī)颉硩u橋[J];世界橋梁;2009年03期
9 胡柏學(xué);國(guó)內(nèi)首創(chuàng)的新橋型“懸?guī)颉毖芯砍晒ㄟ^技術(shù)鑒定[J];中南公路工程;1989年04期
10 邵軍,戴仁杰;懸?guī)ЫY(jié)構(gòu)橋梁設(shè)計(jì)的初探[J];結(jié)構(gòu)工程師;1995年02期
相關(guān)會(huì)議論文 前1條
1 陳冠雄;張翔;;關(guān)于懸?guī)虻慕Y(jié)構(gòu)分析與計(jì)算[A];全國(guó)橋梁結(jié)構(gòu)學(xué)術(shù)大會(huì)論文集(下冊(cè))[C];1992年
相關(guān)碩士學(xué)位論文 前2條
1 紀(jì)寵浩;鋼管混凝土懸?guī)Ч皹蚴芰π阅苎芯縖D];福州大學(xué);2014年
2 王喜軍;人行懸?guī)虻膽?yīng)用及受力特性分析[D];長(zhǎng)安大學(xué);2006年
,
本文編號(hào):1409854
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1409854.html
本文關(guān)鍵詞:鋼管混凝土懸?guī)Ч皹蚴芰π阅苎芯?/strong> 出處:《福州大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 鋼管混凝土 懸?guī)Ч皹?/b> 設(shè)計(jì) 受力性能 施工監(jiān)控 有限元參數(shù)分析
【摘要】:拱橋和索橋的歷史悠久,利用二者各自的優(yōu)勢(shì),取長(zhǎng)補(bǔ)短組合形成的懸?guī)Ч皹?是近年來新出現(xiàn)的一種結(jié)構(gòu)形式。結(jié)合鋼管混凝土拱,提出鋼管混凝土懸?guī)Ч皹蛐聵蛐?降低了對(duì)基礎(chǔ)的要求,并將自錨式拱橋中受壓傳力斜桿簡(jiǎn)化成為橋臺(tái)的一部分,提高了結(jié)構(gòu)的利用效率,具有結(jié)構(gòu)受力合理、橋型輕巧美觀等優(yōu)點(diǎn)。為了解該橋型的力學(xué)特性和計(jì)算方法,本文開展了該橋型的設(shè)計(jì)計(jì)算、施工監(jiān)控和參數(shù)分析,主要工作與研究成果有:(1)開展一座鋼管混凝土懸?guī)Ч皹虻脑O(shè)計(jì)與計(jì)算分析,并按照國(guó)內(nèi)現(xiàn)行的規(guī)范規(guī)程對(duì)鋼管混凝土懸?guī)Ч皹虿煌芰?gòu)件或結(jié)構(gòu)進(jìn)行了驗(yàn)算。驗(yàn)算結(jié)果表明,設(shè)計(jì)橋梁結(jié)構(gòu)的受力性能均可滿足規(guī)范要求。(2)結(jié)合已有的懸?guī)蚝弯摴芑炷凉皹虻脑O(shè)計(jì)和建模思路,提出了適合于該橋型的建模方法。(3)開展了實(shí)橋的施工監(jiān)控。結(jié)果表明,各個(gè)主要施工工況下實(shí)測(cè)的拱肋撓度、應(yīng)力變化規(guī)律和有限元模型計(jì)算結(jié)果吻合較好,驗(yàn)證了該建模方法的正確性。(4)借鑒傳統(tǒng)橋梁施工預(yù)拱度設(shè)置方法,進(jìn)行鋼管混凝土懸?guī)Ч皹虻墓袄呓Y(jié)構(gòu)預(yù)拱度的設(shè)置。結(jié)果表明,鋼管拱肋成橋階段的線形與模型計(jì)算結(jié)果吻合較好,表明這種預(yù)拱度設(shè)置方法是合理可行的。(5)通過算例分析了國(guó)內(nèi)現(xiàn)行的規(guī)范規(guī)程規(guī)定的施工精度控制指標(biāo)對(duì)鋼管混凝土懸?guī)Ч皹虻匿摴芄袄叩倪m用性。結(jié)果表明,拱肋和懸?guī)У淖畲缶形偏位對(duì)橋梁結(jié)構(gòu)受力性能影響很小,說明其施工精度控制指標(biāo)可應(yīng)用于鋼管混凝土懸?guī)Ч皹颉?6)利用已驗(yàn)證過的有限元模型開展結(jié)構(gòu)設(shè)計(jì)參數(shù)分析。結(jié)果表明,隨著矢跨比增加,拱腳軸力、懸?guī)лS力和結(jié)構(gòu)對(duì)橋臺(tái)的推力均逐漸減。还袄咄鈨A角增大會(huì)降低拱結(jié)構(gòu)對(duì)懸?guī)ЫY(jié)構(gòu)的支撐作用,導(dǎo)致拱腳軸力和推力的下降,而懸?guī)лS力、懸?guī)c拱肋位移均有所增加,且拱肋外傾角度增加還會(huì)使得結(jié)構(gòu)的穩(wěn)定性降低,失穩(wěn)模態(tài)從面外失穩(wěn)變?yōu)槊鎯?nèi)失穩(wěn);提高拱結(jié)構(gòu)對(duì)懸?guī)ЫY(jié)構(gòu)的支撐比例對(duì)于減小拱肋位移、懸?guī)ё畲笪灰坪蛻規(guī)лS力也有較大的作用,但會(huì)使結(jié)構(gòu)對(duì)基礎(chǔ)的推力增大,可通過加大預(yù)張力來抵消這一不利影響;隨著橋面板厚度的增加,對(duì)于總體結(jié)構(gòu)的受力均產(chǎn)生不利影響,在壓應(yīng)力允許范圍內(nèi),宜采用高強(qiáng)輕薄的橋面板;懸?guī)ЫY(jié)構(gòu)鉸接和固結(jié)情形下對(duì)結(jié)構(gòu)受力的影響幾乎可以忽略;現(xiàn)澆懸?guī)О蹇蓽p小成橋的懸?guī)灰魄姨岣呓Y(jié)構(gòu)穩(wěn)定性。
[Abstract]:The arch bridge and the cable bridge have a long history. The sling arch bridge which is formed by the combination of the two advantages is a new structural form in recent years, combined with concrete filled steel tube arch. The new bridge type of concrete filled steel tubular suspension arch bridge is put forward, which reduces the requirement of foundation, and simplifies the oblique bar of pressure transmission in self-anchored arch bridge as a part of abutment, which improves the utilization efficiency of the structure and has reasonable structural force. In order to understand the mechanical characteristics and calculation method of the bridge type, the design calculation, construction monitoring and parameter analysis of the bridge type are carried out in this paper. The main work and research results are as follows: 1) the design and calculation of a concrete-filled steel tubular sling arch bridge is carried out. In accordance with the current domestic codes and regulations, the different members or structures of CFST sling arch bridge are checked and calculated. The results show that. The mechanical properties of the design bridge structure can meet the requirements of the code. 2) combined with the existing suspension bridge and concrete filled steel tube arch bridge design and modeling ideas. The construction monitoring of the bridge is carried out. The results show that the deflection of arch rib is measured under the main construction conditions. The stress variation law is in good agreement with the finite element model calculation results, which verifies the correctness of the modeling method. 4) the traditional bridge construction pre-arch setting method is used for reference. The results show that the alignment of steel tube arch ribbed bridge is in good agreement with the model calculation results. This method is reasonable and feasible. This paper analyzes the applicability of the construction precision control index of the current domestic code to the steel tube arch rib of the concrete-filled steel tubular sling arch bridge through a numerical example. The results show that the construction precision control index is applicable to the concrete filled steel tube arch bridge. The maximum linear deflection of arch rib and sling band has little effect on the behavior of bridge structure. It is shown that the construction precision control index can be applied to the concrete filled steel tube sling arch bridge. The structural design parameters are analyzed by using the verified finite element model. The results show that the axial force of the arch foot increases with the increase of the rise-span ratio. The axial force of suspension belt and the thrust of structure on abutment decrease gradually. The increase of external inclination angle of arch rib will reduce the supporting effect of arch structure on the sling structure, and lead to the decrease of axial force and thrust of arch foot, while the axial force of suspension band, suspension belt and arch rib displacement will increase. The stability of the structure will be decreased with the increase of the external inclination of the arch rib, and the instability mode will change from the out-of-plane instability to the in-plane instability. Increasing the support ratio of arch structure to sling band structure can reduce the displacement of arch rib, the maximum displacement of suspension band and the axial force of suspension band, but it will increase the thrust of the structure to the foundation. This adverse effect can be offset by increasing pretension; With the increase of the thickness of the bridge deck, the stress of the whole structure will be adversely affected. Within the range of compressive stress, it is advisable to adopt the high-strength and light-weight deck. In the case of hinged and consolidated sling structure, the influence on the stress of the structure can be almost ignored. The cast-in-place sling slab can reduce the suspension displacement of the bridge and improve the stability of the structure.
【學(xué)位授予單位】:福州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U441;U448.22
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范蕾;姚輝瑞;;白水河懸?guī)蚪Y(jié)構(gòu)分析與設(shè)計(jì)[J];山東交通科技;2009年06期
2 胡柏學(xué),陳建平;懸?guī)蛟O(shè)計(jì)與施工[J];中南公路工程;1990年01期
3 唐忠平;賈輝;;懸?guī)蛴米鞔罂鐝綐蛄旱目尚行苑治鯷J];浙江工商職業(yè)技術(shù)學(xué)院學(xué)報(bào);2007年02期
4 湯崇儀;;懸?guī)騕J];國(guó)外公路;1983年03期
5 肖邦漢;用新材料加勁的懸?guī)?板索橋)的施工及有關(guān)試驗(yàn)[J];國(guó)外橋梁;1994年03期
6 董明;預(yù)應(yīng)力混凝土懸?guī)蚪Y(jié)構(gòu)的分析計(jì)算方法[J];云南工業(yè)大學(xué)學(xué)報(bào);1995年02期
7 莊影毓,王瑋瑤,陳科昌;懸?guī)虻臉蛐头桨秆芯縖J];上海公路;1998年01期
8 ;沒有采用地錨的懸?guī)颉硩u橋[J];世界橋梁;2009年03期
9 胡柏學(xué);國(guó)內(nèi)首創(chuàng)的新橋型“懸?guī)颉毖芯砍晒ㄟ^技術(shù)鑒定[J];中南公路工程;1989年04期
10 邵軍,戴仁杰;懸?guī)ЫY(jié)構(gòu)橋梁設(shè)計(jì)的初探[J];結(jié)構(gòu)工程師;1995年02期
相關(guān)會(huì)議論文 前1條
1 陳冠雄;張翔;;關(guān)于懸?guī)虻慕Y(jié)構(gòu)分析與計(jì)算[A];全國(guó)橋梁結(jié)構(gòu)學(xué)術(shù)大會(huì)論文集(下冊(cè))[C];1992年
相關(guān)碩士學(xué)位論文 前2條
1 紀(jì)寵浩;鋼管混凝土懸?guī)Ч皹蚴芰π阅苎芯縖D];福州大學(xué);2014年
2 王喜軍;人行懸?guī)虻膽?yīng)用及受力特性分析[D];長(zhǎng)安大學(xué);2006年
,本文編號(hào):1409854
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1409854.html