面向電梯零部件智能制造的切削參數(shù)優(yōu)化及知識庫研究與開發(fā)
[Abstract]:With the development of the 2025 Plan of Manufacturing in China, the manufacturing industry is facing a new direction of development, that is, intelligent manufacturing. The intelligent optimization of cutting parameters is an important part of intelligent manufacturing technology. Reasonable cutting parameters can improve the machining efficiency of the workpiece, improve the machining quality of the workpiece and prolong the service life of the tool. At present, the choice of cutting parameters mainly depends on the practical experience of the technicians or through the inquiry of cutting manual, which is more dependent on people, and the choice of cutting parameters is more conservative, which will restrict the manufacturing resources to give full play to its maximum benefit. In view of the above problems, combined with the existing research results of artificial intelligence technology, the knowledge representation, reasoning and optimization selection of cutting parameters in the process of intelligent selection of cutting parameters are studied and explored. The knowledge base of cutting parameters of elevator parts is established. The main research contents of this paper are as follows: (1) the characteristics of elevator parts manufacturing process are analyzed, and the significance of realizing intelligent selection of elevator parts manufacturing process parameters is further expounded. On the basis of the research status of cutting parameter optimization and knowledge base at home and abroad, the problems of cutting parameter optimization in elevator parts manufacturing are found, and the development trend of this research direction is summarized. The main content and chapter arrangement of this subject are sorted out. (2) the cutting process principle of discrete manufacturing process of elevator parts is expounded, and the actual situation of an elevator parts enterprise is combined. The elevator parts are classified and the machining process of elevator parts is analyzed. The application of optimization theory in mechanical manufacturing is studied, which lays a theoretical foundation for further research on optimization model of cutting parameters and intelligent selection of cutting parameters. (3) the relevant factors in the actual machining process of elevator parts are studied. Based on the idea of green low carbon manufacturing and taking processing time and CO2 emission as the optimization target, the cutting parameter optimization model under continuous working step is established. The multi-objective optimization method is studied and an improved artificial fish swarm algorithm based on Pareto is proposed. The performance of the algorithm is tested, and the improved algorithm is applied to the actual cutting case. It provides case knowledge for the construction of knowledge base. (4) based on the theoretical analysis of cutting parameters optimization of elevator parts machining process, combined with the actual situation of an elevator parts manufacturing enterprise, The whole structure of the knowledge base of cutting parameters of elevator parts is determined. The knowledge representation method of cutting parameters of elevator parts is established by synthetically using all kinds of techniques and methods, and the intelligent selection method of cutting parameters based on CBR and RBR is determined. (5) based on the above research theory, The system is designed and implemented by using PowerBuilder as client development tool, SQL Server2012 as database management tool and Matlab development language. On this basis, a prototype system of intelligent selection of cutting parameters is designed, which can meet the actual needs of enterprises, and the intelligent selection of cutting parameters of elevator parts is preliminarily realized.
【學位授予單位】:江南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TG501
【參考文獻】
相關期刊論文 前10條
1 岳彩旭;蔡春彬;黃翠;劉二亮;;切削加工過程有限元仿真研究的最新進展[J];系統(tǒng)仿真學報;2016年04期
2 張金偉;;中國互聯(lián)網(wǎng)+制造戰(zhàn)略發(fā)展探討[J];智富時代;2016年04期
3 王蕓;孫輝;;多策略并行學習的異構粒子群優(yōu)化算法[J];計算機應用;2015年11期
4 王喜文;;智能制造:新一輪工業(yè)革命的主攻方向[J];人民論壇·學術前沿;2015年19期
5 周濟;;智能制造——“中國制造2025”的主攻方向[J];中國機械工程;2015年17期
6 孫秋霞;;智能制造,中國制造的未來[J];中國科技獎勵;2015年07期
7 王喜文;;工業(yè)4.0、互聯(lián)網(wǎng)+、中國制造2025 中國制造業(yè)轉型升級的未來方向[J];國家治理;2015年23期
8 張潔;呂佑龍;;智能制造的現(xiàn)狀與發(fā)展趨勢[J];高科技與產(chǎn)業(yè)化;2015年03期
9 冒志敏;鄭洪源;丁秋林;;一種基于案例推理的動態(tài)故障集診斷算法[J];計算機技術與發(fā)展;2015年05期
10 張相木;;智能制造引領新一輪產(chǎn)業(yè)變革[J];軍工文化;2015年02期
相關博士學位論文 前10條
1 劉學斌;面向源工藝定制的切削參數(shù)優(yōu)化技術研究[D];北京理工大學;2015年
2 劉銘;大型筒節(jié)切削參數(shù)優(yōu)選數(shù)據(jù)庫系統(tǒng)的研究[D];哈爾濱理工大學;2014年
3 蔡盈芳;基于本體的航空產(chǎn)品知識庫構建研究[D];北京交通大學;2011年
4 劉偉;智能CAPP系統(tǒng)中工藝路線和切削參數(shù)的決策研究[D];天津大學;2010年
5 王軍;智能集成CAD/CAPP系統(tǒng)關鍵技術研究[D];燕山大學;2010年
6 邵芳;難加工材料切削刀具磨損的熱力學特性研究[D];山東大學;2010年
7 張曉輝;基于切削過程物理模型的參數(shù)優(yōu)化及其數(shù)據(jù)庫實現(xiàn)[D];上海交通大學;2009年
8 相克俊;混合推理高速切削數(shù)據(jù)庫系統(tǒng)的研究與開發(fā)[D];山東大學;2007年
9 張臣;數(shù)控銑削加工物理仿真關鍵技術研究[D];南京航空航天大學;2006年
10 李曉磊;一種新型的智能優(yōu)化方法-人工魚群算法[D];浙江大學;2003年
相關碩士學位論文 前2條
1 郝傳海;汽車行業(yè)金屬切削數(shù)據(jù)庫系統(tǒng)的研究與開發(fā)[D];山東大學;2011年
2 任小平;難加工材料切削數(shù)據(jù)庫系統(tǒng)的研究與開發(fā)[D];山東大學;2010年
,本文編號:2377755
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2377755.html