天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

半終粉磨系統(tǒng)建模及數(shù)據(jù)驅(qū)動控制研究

發(fā)布時間:2018-11-06 07:27
【摘要】:水泥粉磨是水泥生產(chǎn)的最后一個環(huán)節(jié),直接決定了水泥生產(chǎn)線最終的產(chǎn)量及質(zhì)量。近年來,半終粉磨工藝的應(yīng)用在一定程度上增加了水泥產(chǎn)量,降低了能源消耗;在線激光粒度分析儀在水泥粉磨環(huán)節(jié)上的應(yīng)用,顯現(xiàn)了其在提質(zhì)、節(jié)能、降耗和增產(chǎn)方面的巨大潛力。本文以在線激光粒度分析儀為檢測手段,結(jié)合半終粉磨工藝機理,圍繞水泥粉磨環(huán)節(jié)的磨機負荷和水泥粒度,開展半終粉磨系統(tǒng)建模及數(shù)據(jù)驅(qū)動控制研究。本文研究內(nèi)容為山東省重大專項“智能化工廠關(guān)鍵技術(shù)研究與應(yīng)用示范(2015ZDXX010F01)”和國際合作項目“面向節(jié)能減排的水泥生產(chǎn)過程集成控制系統(tǒng)研究(SQ2013ZOC600)”兩個項目的核心內(nèi)容之一,主要研究工作如下:(1)針對水泥半終粉磨系統(tǒng)的磨機負荷和水泥粒度兩個關(guān)鍵參數(shù),在分析其影響因素的基礎(chǔ)上,建立了其各自數(shù)學(xué)模型。選取循環(huán)風(fēng)機轉(zhuǎn)速和磨機電流分別作為神經(jīng)網(wǎng)絡(luò)的輸入和輸出參量,采用極限學(xué)習(xí)機神經(jīng)網(wǎng)絡(luò)(ELM)算法建立了磨機負荷的數(shù)學(xué)模型,其輸入層與隱含層的權(quán)值和隱含層神經(jīng)元的閾值在辨識過程中隨機產(chǎn)生且保持不變,隱含層神經(jīng)元的數(shù)量被確定之后便可得到唯一最優(yōu)解,并進行了仿真驗證;選取后選粉機轉(zhuǎn)速為模型輸入,小于45?m顆粒含量為模型輸出,采用最小二乘法建立了水泥粒度的數(shù)學(xué)模型,仿真驗證顯現(xiàn)了該模型與水泥粒度的動態(tài)變化具有良好的一致性,為后續(xù)水泥粒度控制算法的研究奠定了基礎(chǔ)。(2)為提高半終粉磨粒度控制的穩(wěn)定性和魯棒性,給出了一種基于數(shù)據(jù)驅(qū)動技術(shù)的水泥粒度自適應(yīng)PID控制方法,解決了控制方法對模型的依賴問題。在建立水泥粒度系統(tǒng)緊格式動態(tài)線性化數(shù)據(jù)模型的基礎(chǔ)上,應(yīng)用粒度控制系統(tǒng)的I/O數(shù)據(jù)(后選粉機轉(zhuǎn)速和小于45?m顆粒含量)估計其偽偏導(dǎo)數(shù)(PPD),調(diào)整PID控制器的參數(shù);仿真結(jié)果驗證了該控制算法的有效性。(3)提出了包括系統(tǒng)軟硬件架構(gòu)、數(shù)據(jù)庫設(shè)計、Bang-Bang與數(shù)據(jù)驅(qū)動自適應(yīng)PID控制相結(jié)合的半終粉磨粒度優(yōu)化控制方案,研發(fā)了半終粉磨粒度優(yōu)化控制系統(tǒng),進行了工程應(yīng)用,取得良好運行效果。
[Abstract]:Cement grinding is the last link in cement production, which directly determines the final output and quality of cement production line. In recent years, the application of semi-finished grinding technology has increased cement production to a certain extent and reduced energy consumption. The application of on-line laser particle size analyzer in cement grinding shows its great potential in improving quality, saving energy, reducing consumption and increasing production. In this paper, based on on-line laser particle size analyzer and combined with the mechanism of semi-finish grinding, the modeling and data-driven control of semi-finished grinding system are studied around the mill load and cement particle size of cement grinding link. The research contents of this paper are "key Technology Research and Application demonstration (2015ZDXX010F01) of Intelligent Factory" and "Research on Integrated Control system of cement production process oriented to Energy Saving and Emission reduction (SQ2013ZOC600)" and International Cooperation Project "Research on cement production process Integrated Control system for Energy Saving and Emission reduction (SQ2013ZOC600)" One of the core elements of the project, The main research work is as follows: (1) aiming at the two key parameters of grinding machine load and cement particle size of the cement semi-finished grinding system, based on the analysis of its influencing factors, the respective mathematical models are established. The rotational speed of circulating fan and the current of mill are selected as the input and output parameters of neural network, and the mathematical model of mill load is established by using the (ELM) algorithm of extreme learning machine neural network. The weights of the input layer and the hidden layer and the threshold value of the neuron in the hidden layer are generated randomly and remain unchanged during the identification process. The number of neurons in the hidden layer is determined and the unique optimal solution is obtained. Selecting the rotational speed of the separator as the model input and the particle content less than 45 m as the model output, the mathematical model of cement particle size is established by using the least square method. The simulation results show that the model is in good agreement with the dynamic change of cement particle size, which lays a foundation for the subsequent research of cement granularity control algorithm. (2) to improve the stability and robustness of semi-finished grinding granularity control. An adaptive PID control method for cement granularity based on data-driven technology is presented, and the dependence of the control method on the model is solved. Based on the dynamic linearization data model of cement granularity system compact format, the pseudo-partial derivative (PPD), is estimated by using the I / O data of the granularity control system (the speed of the later separator and the particle content less than 45m). Adjust the parameters of PID controller; Simulation results verify the effectiveness of the control algorithm. (3) A semi-finish-grinding granularity optimization control scheme, which includes system hardware and software architecture, database design, Bang-Bang and data-driven adaptive PID control, is proposed. The particle size optimization control system of semi-finish grinding has been developed and applied in engineering, and good operation effect has been obtained.
【學(xué)位授予單位】:濟南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ172.632;TP273

【參考文獻】

相關(guān)期刊論文 前10條

1 吳茂勝;袁鑄鋼;張強;;基于水泥粒度工況模板的聯(lián)合粉磨系統(tǒng)建模[J];控制工程;2016年09期

2 石國平;徐向升;;雙圈流水泥粉磨系統(tǒng)與半終水泥粉磨系統(tǒng)之比較[J];中國水泥;2016年06期

3 代桃桃;張強;申濤;;水泥磨機負荷的LPV預(yù)測控制[J];濟南大學(xué)學(xué)報(自然科學(xué)版);2016年02期

4 田力;袁東;楊國春;;水泥工業(yè)粉磨系統(tǒng)的節(jié)電方法[J];新世紀水泥導(dǎo)報;2015年01期

5 張先壘;袁鑄鋼;張強;;基于Bang-Bang的水泥立式輥壓磨模糊PID控制[J];濟南大學(xué)學(xué)報(自然科學(xué)版);2015年02期

6 孫毅剛;劉靜雅;趙珍;;基于極限學(xué)習(xí)機的航空發(fā)動機傳感器故障診斷[J];傳感器與微系統(tǒng);2014年08期

7 劉仁德;;淺析影響閉路水泥粉磨產(chǎn)能的主要因素[J];四川水泥;2014年02期

8 劉平成;;水泥半終粉磨關(guān)鍵技術(shù)綜述[J];四川水泥;2014年01期

9 湯健;柴天佑;余文;趙立杰;;在線KPLS建模方法及在磨機負荷參數(shù)集成建模中的應(yīng)用[J];自動化學(xué)報;2013年05期

10 顏文俊;秦偉;;水泥立磨流程的建模和控制優(yōu)化[J];控制工程;2012年06期

相關(guān)碩士學(xué)位論文 前10條

1 吳茂勝;水泥聯(lián)合粉磨系統(tǒng)的建模與預(yù)測控制研究[D];濟南大學(xué);2016年

2 劉亞東;水泥聯(lián)合粉磨粒度控制系統(tǒng)研發(fā)[D];濟南大學(xué);2016年

3 張先壘;水泥生產(chǎn)聯(lián)合粉磨標準工況模板及建模研究[D];濟南大學(xué);2015年

4 鄭鑒君;聯(lián)合粉磨系統(tǒng)磨機負荷辨識方法研究[D];濟南大學(xué);2015年

5 任萬杰;水泥粉磨系統(tǒng)的建模與控制方法研究[D];濟南大學(xué);2013年

6 王陸;數(shù)據(jù)驅(qū)動的預(yù)測控制器設(shè)計與性能監(jiān)控[D];上海交通大學(xué);2013年

7 曲艷召;水泥細度與堿硫含量對混凝土強度發(fā)展的影響[D];重慶大學(xué);2012年

8 李克雷;水泥生產(chǎn)過程分解爐智能控制系統(tǒng)的設(shè)計與開發(fā)[D];東北大學(xué);2010年

9 周揚銘;水泥生產(chǎn)關(guān)鍵設(shè)備及其節(jié)能降耗技術(shù)研究[D];武漢理工大學(xué);2010年

10 范文禮;水泥粉磨技術(shù)的研究與應(yīng)用[D];山東大學(xué);2008年

,

本文編號:2313554

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2313554.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e75f4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com