半終粉磨系統(tǒng)建模及數(shù)據(jù)驅動控制研究
[Abstract]:Cement grinding is the last link in cement production, which directly determines the final output and quality of cement production line. In recent years, the application of semi-finished grinding technology has increased cement production to a certain extent and reduced energy consumption. The application of on-line laser particle size analyzer in cement grinding shows its great potential in improving quality, saving energy, reducing consumption and increasing production. In this paper, based on on-line laser particle size analyzer and combined with the mechanism of semi-finish grinding, the modeling and data-driven control of semi-finished grinding system are studied around the mill load and cement particle size of cement grinding link. The research contents of this paper are "key Technology Research and Application demonstration (2015ZDXX010F01) of Intelligent Factory" and "Research on Integrated Control system of cement production process oriented to Energy Saving and Emission reduction (SQ2013ZOC600)" and International Cooperation Project "Research on cement production process Integrated Control system for Energy Saving and Emission reduction (SQ2013ZOC600)" One of the core elements of the project, The main research work is as follows: (1) aiming at the two key parameters of grinding machine load and cement particle size of the cement semi-finished grinding system, based on the analysis of its influencing factors, the respective mathematical models are established. The rotational speed of circulating fan and the current of mill are selected as the input and output parameters of neural network, and the mathematical model of mill load is established by using the (ELM) algorithm of extreme learning machine neural network. The weights of the input layer and the hidden layer and the threshold value of the neuron in the hidden layer are generated randomly and remain unchanged during the identification process. The number of neurons in the hidden layer is determined and the unique optimal solution is obtained. Selecting the rotational speed of the separator as the model input and the particle content less than 45 m as the model output, the mathematical model of cement particle size is established by using the least square method. The simulation results show that the model is in good agreement with the dynamic change of cement particle size, which lays a foundation for the subsequent research of cement granularity control algorithm. (2) to improve the stability and robustness of semi-finished grinding granularity control. An adaptive PID control method for cement granularity based on data-driven technology is presented, and the dependence of the control method on the model is solved. Based on the dynamic linearization data model of cement granularity system compact format, the pseudo-partial derivative (PPD), is estimated by using the I / O data of the granularity control system (the speed of the later separator and the particle content less than 45m). Adjust the parameters of PID controller; Simulation results verify the effectiveness of the control algorithm. (3) A semi-finish-grinding granularity optimization control scheme, which includes system hardware and software architecture, database design, Bang-Bang and data-driven adaptive PID control, is proposed. The particle size optimization control system of semi-finish grinding has been developed and applied in engineering, and good operation effect has been obtained.
【學位授予單位】:濟南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ172.632;TP273
【參考文獻】
相關期刊論文 前10條
1 吳茂勝;袁鑄鋼;張強;;基于水泥粒度工況模板的聯(lián)合粉磨系統(tǒng)建模[J];控制工程;2016年09期
2 石國平;徐向升;;雙圈流水泥粉磨系統(tǒng)與半終水泥粉磨系統(tǒng)之比較[J];中國水泥;2016年06期
3 代桃桃;張強;申濤;;水泥磨機負荷的LPV預測控制[J];濟南大學學報(自然科學版);2016年02期
4 田力;袁東;楊國春;;水泥工業(yè)粉磨系統(tǒng)的節(jié)電方法[J];新世紀水泥導報;2015年01期
5 張先壘;袁鑄鋼;張強;;基于Bang-Bang的水泥立式輥壓磨模糊PID控制[J];濟南大學學報(自然科學版);2015年02期
6 孫毅剛;劉靜雅;趙珍;;基于極限學習機的航空發(fā)動機傳感器故障診斷[J];傳感器與微系統(tǒng);2014年08期
7 劉仁德;;淺析影響閉路水泥粉磨產能的主要因素[J];四川水泥;2014年02期
8 劉平成;;水泥半終粉磨關鍵技術綜述[J];四川水泥;2014年01期
9 湯健;柴天佑;余文;趙立杰;;在線KPLS建模方法及在磨機負荷參數(shù)集成建模中的應用[J];自動化學報;2013年05期
10 顏文俊;秦偉;;水泥立磨流程的建模和控制優(yōu)化[J];控制工程;2012年06期
相關碩士學位論文 前10條
1 吳茂勝;水泥聯(lián)合粉磨系統(tǒng)的建模與預測控制研究[D];濟南大學;2016年
2 劉亞東;水泥聯(lián)合粉磨粒度控制系統(tǒng)研發(fā)[D];濟南大學;2016年
3 張先壘;水泥生產聯(lián)合粉磨標準工況模板及建模研究[D];濟南大學;2015年
4 鄭鑒君;聯(lián)合粉磨系統(tǒng)磨機負荷辨識方法研究[D];濟南大學;2015年
5 任萬杰;水泥粉磨系統(tǒng)的建模與控制方法研究[D];濟南大學;2013年
6 王陸;數(shù)據(jù)驅動的預測控制器設計與性能監(jiān)控[D];上海交通大學;2013年
7 曲艷召;水泥細度與堿硫含量對混凝土強度發(fā)展的影響[D];重慶大學;2012年
8 李克雷;水泥生產過程分解爐智能控制系統(tǒng)的設計與開發(fā)[D];東北大學;2010年
9 周揚銘;水泥生產關鍵設備及其節(jié)能降耗技術研究[D];武漢理工大學;2010年
10 范文禮;水泥粉磨技術的研究與應用[D];山東大學;2008年
,本文編號:2313555
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2313555.html