一種新型環(huán)境友好高效鹵水阻垢劑
[Abstract]:In the process of underground brine mining, with the change of temperature and pressure in the underground geological conditions and the process of extracting halogen, different fractions of the bittern occur in different degrees of crystallization and scaling, which reduces the effective volume of the pipeline, increases the pipe resistance, reduces the production and restricts the exploitation and sustainable utilization of the brine. In the process of water mining, the phenomenon of crystallization and scaling, which should be added to the scale inhibitor, should be added to inhibit the production of the scale, thus improving the production of the brine, reducing the energy consumption, and ensuring the continuous utilization of the equipment and structures of the halogen. In the process of developing the scale inhibitor, the effect of the follow-up on the environment should be taken into consideration, so the phosphorus free, nitrogen free and biodegradable materials should be selected. This paper relies on the key technology of high efficiency mining in the deep brine of the State 863 plan of the the Yellow River Delta. On the basis of consulting the relevant literature at home and abroad, the problem of salt precipitation and scaling is easy to occur in the process of extraction and transportation of deep brine, and a new green resistance is developed on the basis of the analysis of the scaling mechanism of the extraction and extraction of the brine. The scale agent not only studies its temperature resistance and salt resistance, but also analyzes its advanced, environmental friendly and scale inhibition mechanism. The main contents and results are as follows: (1) the main salt analysis of unsaturated and saturated brine during extraction and extraction by using ICP-AES, ion selective electrode method, temperature pressure simulation method and so on. The change of the concentration of the scaling elements and the variation of the saturated solubility of the main salt forming elements at various temperatures and pressures have been systematically studied. The results show that: (1) the concentration of the main salt precipitation and scaling elements in the halogen does not change with the change of the depth of the halogen. The concentration change is significant, in which Ca2+ is the first precipitation, followed by Ba2+, Sr2+, and the precipitation of NaCl. The concentration of Sr2+ has the greatest change in the process of extracting to 500m from the underground 1500m. (3) the change rate of the saturated solubility of the four main salt precipitation ions in the saturated brine under the atmospheric pressure and the change rate of the saturation solubility with the elevation of the saturation solubility. It is basically the same. When the temperature is reduced from 120 to 80, the change rate of Ca2+ concentration is the largest. The maximum change rate of Ba2+ concentration is the maximum from 80 C to 60 C. The maximum change rate of Sr2+ concentration is increased from 60 C to 20 C. At 60 C, the saturation solubility of four main salt precipitation ions in saturated brine increases with the pressure increase, but the change rate is basic. Therefore, the temperature change of the saturated brine during the extraction process is the main factor affecting the precipitation sequence of salt precipitation. (2) the formation process of salt scale can be expressed as: brine, scale element saturation, scaling element supersaturation, nucleation, NaCl co precipitation, crystal growth and salt scale, and its main components are NaCl, CaSO4, BaS. O4, SrSO4. in the process of extraction, the phenomenon of salt precipitation and scaling in unsaturated brine is light, and the scale phenomenon of salt precipitation in saturated brine is serious. When the temperature is reduced from 120 to 80, the formation of salt scale with CaSO4 as the main BaSO4, SrSO4 as auxiliary and adsorption coprecipitation NaCl; when from 80 to 60 C, BaSO4 is the main CaSO4, SrSO4 is supplemented and adsorbed together. The salt scale of NaCl was precipitated; from 60 to 20 C, the formation of salt scale with SrSO4 as the main CaSO4 and BaSO4 as the auxiliary and co precipitation of NaCl. (3) in combination with the influence factors and formation process of the above salt precipitation scaling, the mechanism of salt precipitation scaling was elaborated, as follows: with the change of the thermodynamic conditions, such as temperature, pressure and so on, when the solution was formed. When the concentration of the scale ion is higher than the equilibrium concentration, the anion and cation interact to form the ion pair. The ions form the nucleus of the tube wall or other impurities. The scale ions in the solution diffuse, crystallize, and grow up and eventually form a scale on the wall of the tube. Because of the adsorption and co precipitation, the NaCl crystal also precipitates, forming a mixed salt scale and salt evolution. There is a mutual promotion relationship with scaling. The formation of salt scale will also be influenced by the surface state of the pipe, the flow velocity of brine, the species and quantity of microorganism. (4) through the study of polyepoxide succinate PESA, polyaspartic acid PASP, sodium lignosulfonate, twelve alkyl sodium sulfate, fatty alcohol polyoxyethylene ether AEO-9, nonylphenol polyoxyethylene ether TX-1 0, a new scale inhibitor based on polyepoxysuccinic acid and sodium lignosulfonate was developed and tested. The results showed that the scale inhibitor did not contain nitrogen and phosphorus, and the scale inhibition rate of Na+, Ca2+, Ba2+, Sr2+ in brine when the ratio of polyepoxysuccinic acid to sodium lignosulfonate was 3:2 and the dosage was 35mg/L. The scale inhibition rate of 99.43%, 99.45%, 99.24%, 90.85%, and weighted scale inhibition rate is 99.15%, respectively. By comparing the scale of brine, calcium sulfate, barium sulfate, strontium sulphate, and sodium chloride, the lattice distortion of the new compound scale inhibitor on the scale of brine, the chelation and the charge dispersion are stronger. The lattice distortion of barium sulfate and strontium sulphate, strong chelation and the charge dispersion of sodium chloride are stronger for barium sulfate and strontium sulfate. (5) the new scale inhibitor is carried out in shinfa Feicheng Shengli Chemical Co., Ltd., Dongying Dongyue Salt Industry Co., Ltd., Shandong taco Chemical Co., Ltd., and Shouguang national strength Chemical Co., Ltd. The application results show that the new scale inhibitor has good scale inhibition and corrosion inhibition, and the scale inhibition rate can reach more than 90%. Compared with the scale inhibitor used in the process of extraction and extraction at home and abroad, the new scale inhibitor has the advantages of friendly environment, no phosphorus containing nitrogen, good scale inhibition effect and many functions.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TQ085.4
【相似文獻】
相關期刊論文 前10條
1 賈成鳳,李義久;共聚物阻垢劑的研究進展[J];上;;2002年18期
2 李艷麗,周柏青,施有弟,王曉偉;反滲透阻垢劑的研究進展[J];工業(yè)水處理;2004年03期
3 張冰如,歐陽清華,李風亭;快速評價反滲透專用阻垢劑阻垢性能的實驗技術[J];膜科學與技術;2004年06期
4 李冬,董鴻志,張利輝,郭茹輝,張彥河,田彩莉,劉振法;聚合物阻垢劑研究進展[J];河北省科學院學報;2005年01期
5 石華前;夏世斌;;新型反滲透阻垢劑的性能研究及應用[J];國外建材科技;2006年04期
6 舒紅英;唐星華;覃毅;;無磷阻垢劑的研究進展[J];江西化工;2006年03期
7 蔣皎梅;陳國松;張紅漫;張之翼;;循環(huán)冷卻水中阻垢劑用量的實驗研究[J];工業(yè)水處理;2007年01期
8 李偉超;吳曉東;劉平;張貴才;葛際江;;油田用阻垢劑評價研究[J];鉆采工藝;2007年01期
9 張洪利;梅超群;趙秋伶;劉志強;;國內阻垢劑研究現(xiàn)狀及展望[J];化學工程師;2007年04期
10 田彩莉;姜紅靜;楊維之;劉振法;高玉華;;適用于高硬度水質的反滲透阻垢劑的研究[J];工業(yè)水處理;2007年11期
相關會議論文 前10條
1 田彩莉;劉振法;高玉華;吳運娟;;一種新型環(huán)保高效反滲透阻垢劑[A];2008年中國精細化工協(xié)會水處理化學品行業(yè)年會論文集[C];2008年
2 王蓉蓉;陳浩;李建璽;姜國策;張小剛;郭焱;;海水循環(huán)冷卻系統(tǒng)阻垢劑單體阻垢性能試驗研究[A];2008年中國精細化工協(xié)會水處理化學品行業(yè)年會論文集[C];2008年
3 吉衛(wèi);;一種綠色環(huán)保高效膜用阻垢劑[A];膜分離技術在石油和化工行業(yè)中應用研討會論文集[C];2006年
4 彭福兵;;“環(huán)境友好”可生化降解的新型增強型馬來酸聚合物阻垢劑的研究[A];2013中國水處理技術研討會暨第33屆年會論文集[C];2013年
5 靳曉霞;王會;滕厚開;;有機膦類阻垢劑抑制硫酸鈣垢行為的研究[A];2008中國水處理技術研討會暨第28屆年會論文集[C];2008年
6 霍宇凝;陸柱;;聚合物阻垢劑研究進展[A];’2001全國工業(yè)用水與廢水處理技術交流會論文集暨水處理技術匯編[C];2001年
7 李凡修;辛焰;陳武;;共聚物類阻垢劑的研制進展[A];’2001全國工業(yè)用水與廢水處理技術交流會論文集暨水處理技術匯編[C];2001年
8 霍宇凝;陸柱;;聚合物阻垢劑研究進展[A];中國土木工程學會水工業(yè)分會第四屆理事會第一次會議論文集[C];2002年
9 周偉生;呂勇;齊登谷;;反滲透膜用阻垢劑的實驗室評價[A];’2004全國水處理技術研討會暨第24屆年會論文集[C];2004年
10 閆巖;;硅垢阻垢劑及評價方法的研究現(xiàn)狀[A];’2004全國水處理技術研討會暨第24屆年會論文集[C];2004年
相關重要報紙文章 前4條
1 葛軍 于海龍;中鋁山東企業(yè)研發(fā)“新型阻垢劑”達到國內先進水平[N];中國有色金屬報;2009年
2 ;反滲透除污阻垢技術[N];科技日報;2006年
3 特約記者 劉寬勝;我壓縮機阻垢劑躋身國際前列[N];中國化工報;2010年
4 特約記者 劉寬勝;國產堿性阻垢劑保裝置低耗穩(wěn)運[N];中國化工報;2012年
相關博士學位論文 前5條
1 孫詠紅;聚環(huán)氧琥珀酸反滲透阻垢劑綠色化學研究[D];中南林業(yè)科技大學;2010年
2 周偉生;反滲透膜用藥劑的制備及其性能研究[D];天津工業(yè)大學;2007年
3 李本高;煉化裝置循環(huán)冷卻水質特性與水處理效果的關系研究[D];石油化工科學研究院;2007年
4 曹生現(xiàn);冷卻水污垢對策評價與預測方法及裝置研究[D];華北電力大學(河北);2009年
5 夏明珠;膦;人岬暮铣膳c性能[D];南京理工大學;2006年
相關碩士學位論文 前10條
1 昌誠;綠色膜用阻垢劑的制備與評價研究[D];山東建筑大學;2015年
2 張鑫;一種新型環(huán)境友好高效鹵水阻垢劑[D];山東大學;2015年
3 梁兆燕;循環(huán)冷卻水中聚合物的分析研究[D];山東大學;2015年
4 姜紅靜;環(huán)保型反滲透阻垢劑的復配及性能研究[D];河北工業(yè)大學;2008年
5 申戰(zhàn)輝;低溫多效蒸餾海水淡化專用阻垢劑的研制與性能評價[D];南京理工大學;2010年
6 冷曼希;新型無磷阻垢劑的合成及性能評價[D];西南石油大學;2010年
7 吳雁;水溶性固體阻垢劑的研究[D];西南石油學院;2003年
8 侯振宇;油井高鈣、鍶、鋇環(huán)境下高效阻垢劑的制備[D];西北工業(yè)大學;2006年
9 何愛江;阻垢劑性能及機理研究[D];四川大學;2006年
10 王海鳳;新型低磷反滲透膜阻垢劑的研制及性能研究[D];同濟大學;2007年
,本文編號:2138547
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2138547.html