鉍基鈣鈦礦結(jié)構(gòu)材料的制備與電學(xué)性能研究
[Abstract]:Bismuth based perovskite structure electronic materials have attracted much attention due to their unique dielectric, ferroelectric and piezoelectric properties. BiFeO_3 (BFO) is the only ferroelectric and antiferromagnetic material at the same time at room temperature. It shows good electromagnetics, semiconductor properties, resistance and gas sensitivity. In addition, titanic acid Sodium bismuth (Bi_ (0.5) (0.5) Na_ (0.5) TiO_3, BNT) is a kind of material with excellent piezoelectric properties. By combining with potassium bismuth titanate (Bi0.5K0.5TiO3, BKT) in a certain proportion and on the basis of the quasi Homo phase boundary (MPB), it will show high electrostrain properties and excellent dielectric tuning properties. Therefore, this paper is based on BiFeO_3 and Bi_ (0.5) Na_. (0.5) TiO_3 based material was used as the research object. By solid phase reaction, sol-gel method and hydrothermal method, A bit ion substitution or compound modification was carried out, and the effects of substitution composite on its ferroelectric, piezoelectricity, dielectric tuning, electrostrain and gas sensitivity were studied. The BiFeO_3 (Bi) of A position La substitution was prepared by the solid state reaction method. 1-xLaxFeO3, BLF) ceramics, study the effect of the substitution ratio on its electrical nonlinearity. Heat treatment and test the electrical properties of BLF under different atmospheres. It is found that the BLF conductance mechanism belongs to the P cavity conduction mechanism. The higher the oxygen partial pressure in the heat treatment atmosphere is, the better the conductivity is, the better the.BLF is in the nonlinear volt ampere characteristic, when the external electric field exceeds a certain threshold. After the increase of the current and the decrease of the resistance, the nonlinear coefficient increases with the decrease of the La substitution, increases with the increase of the temperature, and increases with the increase of the oxygen partial pressure in the heat treatment atmosphere. The nonlinear coefficient of the annealing treatment is the highest. It is pointed out that this resistance effect comes from the micro electronic heterogeneity at the ferroelectric domain and the domain wall. Structure, the conductivity of ferroelectric domain and domain wall is different, which leads to the existence of rectifying effect at the domain wall. The BiFeO_3 (Bi0.9Ba0.1FeO2.95, BBFO10) powder, which is substituted by A bit Ba, is prepared by sol-gel method. The gas sensing performance of several typical volatile gases is investigated and the sensitivity of the gas detection is significantly higher than that of pure BFO, and it is fast and fast. The response recovery speed, good gas selectivity and long-term stability are obtained. It is found that the area of BBFO10 is larger than the BFO powder, and the area of the contact with the gas molecules increases in the gas sensitive reaction. It is beneficial to increase the sensitivity of the reaction. In addition, the two valence Ba2+ ion division is used to replace the trivalent Bi3+ ion, which makes the oxygen vacancy in BBFO10. The increase in concentration also helps to improve the gas sensitivity of BBFO10. The BiFeO_3 (Bi0.9Ce0.1FeO3, BCFO) powders of BiFeO_3 and A sites were prepared by hydrothermal method and microwave hydrothermal method. The magnetic properties of the BiFeO_3 (Bi0.9Ce0.1FeO3, BCFO) powders were studied. The BFO prepared by the microwave hydrothermal method showed paramagnetic, while the BFO and BCFO-H prepared by hydrothermal method were weak ferromagnetic and Ce partly replaced. The magnetic properties of BCFO are obviously improved. This is due to the variation of the hybrid electron migration and the difference in the ionic radius of the internal and external orbit. The (1-x) (0.8BNT-0.2BKT) -xNaNbO3 (BNKT-xNN) ceramics are prepared. The changes of the strain, ferroelectric and dielectric properties with the components and temperature are studied. With the increase of NN content, BNKT-xNN gradually transforms from non ergodic relaxor ferroelectrics to ergodical relaxor, which shows that the phase transition temperature of ferroelectric phase TF-R decreases from room temperature to room temperature, and the piezoelectric coefficient d33 drops sharply, the hysteresis loop becomes thin waist, and the strain S-E curve is transformed from butterfly shape to bud shape. The irreversible phase transition of the ergodical relaxor component occurs under the action of the electric field. The transformation of the three square phase from the pseudopotential phase to the temperature above TF-R increases significantly. The electrostrain of the BNKT-0.04NN at room temperature is 0.445%, the Smax/Emax value is up to 810 pm/V, and the large strain is derived from the ergodical relaxation phase excited by the electric field. The dielectric tuning properties, the pyroelectric properties and the conduction mechanism of BNKT-xNN ceramics have been studied. The dielectric tuning properties of the materials are significant, and the dielectric tuning behavior is different with the different NN content, and the dielectric tuning behavior of the non ergodic relaxor components before and after the presence of the phase transition is not. The linear transformation is linear, and the group principle of ergodicity relaxor always maintains the nonlinear relation of the nonlinear relation.BNKT-xNN, which is n electron conduction mechanism, and its conductivity increases with the decrease of the concentration of oxygen partial pressure in heat treatment, and its conductance activation energy decreases with the decrease of the concentration of oxygen partial pressure in heat treatment. (1-x) (0.8BNT-0.2BKT) -xBiMg2/3N The strain, ferroelectric and dielectric properties of b1/3O3 (BNKT-xBMN) ceramics vary with the composition and temperature. The phase of.BNKT-x BMN is pseudopotential phase. As a non ergodical relaxor ferroelectric body, BNKT-0BMN exhibits a typical ferroelectric characteristic at room temperature. The irreversible phase transition.BNKT-0.02BMN is a ergodical relaxor ferroelectrics under the action of the electric field. The strain rate can reach 0.431%. Under the low electric field intensity of 40 kV/cm, Smax/Emax can reach up to 862 pm/V and has higher field strain efficiency, so it is suitable for practical application.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TQ174.1;TB34
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫尚梅;鄭云先;;鈣鈦礦結(jié)構(gòu)類型功能材料的制備方法概述[J];延邊大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期
2 常振勇,崔連起;鈣鈦礦金屬氧化物催化劑的研究與應(yīng)用綜述[J];精細(xì)石油化工;2002年03期
3 楊志勝;楊立功;吳剛;汪茫;陳紅征;;基于有機(jī)/無機(jī)雜化鈣鈦礦有序結(jié)構(gòu)的異質(zhì)結(jié)及其光伏性能的研究[J];化學(xué)學(xué)報(bào);2011年06期
4 陳志雄,周方橋,付剛,唐大海;鈣鈦礦結(jié)構(gòu)陶瓷N型半導(dǎo)化評述[J];材料導(dǎo)報(bào);2000年03期
5 莊志強(qiáng);王蘊(yùn)輝;施紅陽;;鈮鎂酸鉛類鈣鈦礦結(jié)構(gòu)鐵電多晶體的制備技術(shù)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期
6 趙旭,栗萍,唐貴德,張變芳,禹日程;Nb摻雜對雙鈣鈦礦化合物居里溫度的影響[J];河北師范大學(xué)學(xué)報(bào);2004年04期
7 范厚剛,姜偉棣,宮杰,楊麗麗,楊景海;LaNiO_3的制備及結(jié)構(gòu)的研究[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年02期
8 鐘偉,吳小玲,姜洪英,湯怒江,都有為;堿金屬摻雜ABO_3和A_3B_2O_7型鈣鈦礦磁卡、磁電阻效應(yīng)研究[J];稀有金屬;2003年05期
9 方亮,張輝,孟范成,洪學(xué)濵,劉韓星,袁潤章;類鈣鈦礦新鈮酸鹽Ba_5LaTi_2Nb_3O_(18)的合成、結(jié)構(gòu)與介電特性[J];高等學(xué);瘜W(xué)學(xué)報(bào);2004年07期
10 歐陽穎,秦永寧,馬智;納米鈣鈦礦的性能及應(yīng)用進(jìn)展[J];天津化工;2002年01期
相關(guān)會(huì)議論文 前10條
1 孟健;馮靜;劉孝娟;呂敏峰;劉建芬;周德鳳;;層狀鈣鈦礦結(jié)構(gòu)化合物的電性和磁性的研究[A];中國化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊)[C];2006年
2 童鵬;孫玉平;;錳基反鈣鈦礦結(jié)構(gòu)功能材料研究進(jìn)展[A];2012中國功能新材料學(xué)術(shù)論壇暨第三屆全國電磁材料及器件學(xué)術(shù)會(huì)議論文摘要集[C];2012年
3 李菲;翁履謙;徐國躍;張樓英;;溶液絡(luò)合法制備鈣鈦礦結(jié)構(gòu)電子陶瓷粉體的合成與表征[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年
4 肖萬生;譚大勇;熊小林;劉景;徐濟(jì)安;;PbCrO_3立方鈣鈦礦壓致等結(jié)構(gòu)相變[A];中國礦物巖石地球化學(xué)學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2011年
5 歐俊;吳伯麟;鐘蓮云;董順熙;;Ba(Mg~(x/12)Ta~(2x/12)Zr~((12-3x)/12))O_3系統(tǒng)相關(guān)系的研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年
6 單躍進(jìn);;新型熱電換能材料-有序鈣鈦礦結(jié)構(gòu)氧化物Cd_3TeO_6的研究[A];2004年中國材料研討會(huì)論文摘要集[C];2004年
7 程思園;吳剛;鄧萌;陳紅征;汪茫;;基于N-6-氨己基咔唑的有機(jī)-無機(jī)雜化層狀鈣鈦礦材料[A];2007年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊)[C];2007年
8 田庚方;李國寶;廖復(fù)輝;林建華;劉蘊(yùn)韜;陳東風(fēng);;新型六方鈣鈦礦Ba_5Ho_(1-x)Mn_4O_(15-y)的合成、結(jié)構(gòu)與性質(zhì)[A];中國原子能科學(xué)研究院年報(bào) 2009[C];2010年
9 隋郁;王陽;王先杰;王一;朱瑞濱;;鈣鈦礦La_(1-x)Ce_xCoO_3自旋態(tài)轉(zhuǎn)變驅(qū)動(dòng)的熱電響應(yīng)[A];2011中國材料研討會(huì)論文摘要集[C];2011年
10 陳濤;;形成CH_3NH_3PbI_(3-x)Cl_x鈣鈦礦吸收層的化學(xué)路徑以及在反式電池結(jié)構(gòu)中應(yīng)用[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第25分會(huì):有機(jī)光伏[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 董廣志;鉍基鈣鈦礦結(jié)構(gòu)材料的制備與電學(xué)性能研究[D];西北工業(yè)大學(xué);2016年
2 張晨陽;鈣鈦礦多鐵材料的合成與性質(zhì)研究[D];吉林大學(xué);2015年
3 趙立峰;非均質(zhì)錳基鈣鈦礦的磁及輸運(yùn)特性研究[D];華中科技大學(xué);2005年
4 童鵬;反鈣鈦礦結(jié)構(gòu)鎳基化合物研究[D];中國科學(xué)院研究生院(合肥物質(zhì)科學(xué)研究院);2007年
5 楊威;高活性納米LaFe系鈣鈦礦的控制合成及其催化脫除小分子污染氣體的機(jī)制研究[D];北京化工大學(xué);2013年
6 薛瑞婷;有機(jī)無機(jī)類鈣鈦礦雜化分子材料的制備和表征[D];中國海洋大學(xué);2011年
7 亓淑艷;錳(鈷)基鈣鈦礦復(fù)合氧化物的制備及磁性研究[D];哈爾濱工程大學(xué);2008年
8 謝穎;A~(2+)B~(4+)O_3型鈣鈦礦晶體的結(jié)構(gòu)相變和表面穩(wěn)定性的研究[D];哈爾濱工業(yè)大學(xué);2008年
9 任召輝;鈣鈦礦和前鈣鈦礦氧化物納米材料的制備、結(jié)構(gòu)與性能研究[D];浙江大學(xué);2008年
10 鄭瑩瑩;有機(jī)/無機(jī)雜化鈣鈦礦結(jié)構(gòu)光電功能材料的研究[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 肖池池;In摻雜SrCe_(0.95)Tm_(0.05)O_(3-δ)膜的穩(wěn)定性和透氫量研究[D];華南理工大學(xué);2015年
2 唐瑾;鈣鈦礦復(fù)合鐵電薄膜的制備研究[D];上海師范大學(xué);2015年
3 駱宗力;鈣鈦礦太陽能電池制備技術(shù)研究[D];河北大學(xué);2015年
4 符凱亮;平面異質(zhì)結(jié)鈣鈦礦太陽電池的模擬與制備研究[D];鄭州大學(xué);2015年
5 姚海云;鈣鈦礦型Pb基反鐵電陶瓷粉的合成、結(jié)構(gòu)表征及電性能[D];內(nèi)蒙古工業(yè)大學(xué);2015年
6 周歡歡;基于摻氯有機(jī)金屬鹵化物鈣鈦礦材料的高效太陽能電池研究[D];鄭州大學(xué);2015年
7 黃利克;平面異質(zhì)結(jié)結(jié)構(gòu)鈣鈦礦太陽電池的研究[D];寧波大學(xué);2015年
8 董旭;基于有機(jī)/無機(jī)雜化鈣鈦礦材料的太陽能電池研究[D];常州大學(xué);2015年
9 劉文強(qiáng);雜化鈣鈦礦太陽能電池的制備與性能研究[D];河南大學(xué);2015年
10 孫邴洋;鈣鈦礦結(jié)構(gòu)光催化材料改性研究:SrTiO_3和NaNbO_3[D];河南大學(xué);2015年
,本文編號:2138396
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2138396.html