特殊精餾分離碳酸二甲酯—甲醇共沸物的工藝優(yōu)化與控制策略
本文選題:碳酸二甲酯 + 甲醇; 參考:《青島科技大學(xué)》2017年碩士論文
【摘要】:碳酸二甲酯(DMC)-甲醇常壓下形成共沸物,采用普通精餾工藝不能得到高純度產(chǎn)品。本文利用Aspen Plus和Aspen Plus Dynamics軟件,采用變壓精餾和隔壁塔萃取精餾的方法對(duì)DMC-甲醇共沸物系實(shí)現(xiàn)有效分離。對(duì)于變壓精餾,以年度總費(fèi)用(TAC)最小為目標(biāo)進(jìn)行經(jīng)濟(jì)優(yōu)化,確定無(wú)熱集成、部分熱集成和完全熱集成工藝的最小TAC分別為323,892.509$/y、259,093.925$/y、248,353.238$/y。針對(duì)不同熱集成工藝中,低壓塔溫度分布均勻,靈敏板選擇困難的問(wèn)題,給出了一種簡(jiǎn)單有效的導(dǎo)斜率判據(jù)。在此基礎(chǔ)上,研究了低壓塔不同靈敏板對(duì)不同熱集成工藝動(dòng)態(tài)特性的影響。動(dòng)態(tài)分析結(jié)果表明:組成-溫度串級(jí)控制策略可以有效的處理無(wú)熱集成、部分熱集成工藝的進(jìn)料流量與組成擾動(dòng)。無(wú)熱集成工藝的最佳溫度控制板為第31塊或30塊板,而部分熱集成工藝的最佳溫度控制板為第31塊或10塊板。對(duì)于完全熱集成工藝,低壓塔第29塊塔板作為靈敏板的壓力-補(bǔ)償溫度控制結(jié)構(gòu),使兩塔產(chǎn)品的穩(wěn)態(tài)余差較小,可以處理±20%的進(jìn)料流量和組成擾動(dòng),實(shí)現(xiàn)穩(wěn)健的動(dòng)態(tài)控制。對(duì)于隔壁塔萃取精餾(EDWC),基于常規(guī)萃取精餾工藝的最優(yōu)參數(shù),利用三塔模型進(jìn)行序貫迭代法優(yōu)化,對(duì)應(yīng)的最小TAC為189,944.75$/y。在動(dòng)態(tài)控制系統(tǒng)中,通過(guò)導(dǎo)斜率判據(jù)選擇出主塔的溫度控制板,并研究了溫度控制板與控制結(jié)構(gòu)的動(dòng)態(tài)可控性關(guān)系。結(jié)果表明:當(dāng)主塔的靈敏板為第12塊塔板時(shí),帶氣相分配比的控制結(jié)構(gòu)能有效處理進(jìn)料擾動(dòng)。而當(dāng)靈敏板為第5塊塔板時(shí),無(wú)氣相分配比控制策略也能緊緊維持產(chǎn)品的純度。由于調(diào)節(jié)氣相分配比在實(shí)際工業(yè)生產(chǎn)中極為困難,因此選擇主塔靈敏板為第5塊塔板的無(wú)氣相分配比控制結(jié)構(gòu)為EDWC的最佳控制方案。
[Abstract]:The azeotrope is formed under normal pressure of two methyl carbonate (DMC) - methanol, and the high purity product can not be obtained by ordinary distillation. This paper uses Aspen Plus and Aspen Plus Dynamics software to achieve effective separation of DMC- methanol azeotrope system by pressure variable distillation and extractive distillation with wall column. For variable pressure distillation, the annual total cost (TAC) is minimal. In order to optimize the economy and determine the non thermal integration, the minimum TAC of the partial heat integration and the complete thermal integration process is 323892.509$/y, 259093.925$/y, and 248353.238$/y., respectively, for the problem of the uniform temperature distribution of the low pressure tower and the difficulty of the selection of the sensitive plate in the different heat integration processes. On the basis of this, the influence of different sensitive plates on the dynamic characteristics of different heat integration processes is studied. The dynamic analysis shows that the composition temperature cascade control strategy can effectively handle the heat free integration, the feed flow and the composition disturbance of the partial heat integration process. The optimum temperature control plate for the heat integrated process is thirty-first or 30 plates. The optimum temperature control plate for the integrated heat transfer process is thirty-first or 10 plates. For the complete thermal integration process, the pressure compensation temperature control structure of the twenty-ninth pylon of the low pressure tower is used as the pressure compensation temperature control structure for the sensitive plate, which makes the steady-state residual difference of the two tower products less, and can handle the feed flow rate and the composition disturbance of 20%, so as to achieve robust dynamic control. EDWC, based on the optimal parameters of the conventional extractive distillation process, the three tower model is used to optimize the sequential iterative method. The corresponding minimum TAC is 189944.75$/y. in the dynamic control system. The temperature control plate of the main tower is selected by the guide slope criterion, and the dynamic controllability relationship between the temperature control plate and the control structure is studied. Ming: when the sensitive plate of the main tower is twelfth plates, the control structure with the gas phase ratio can effectively handle the feed disturbance. When the sensitive plate is the fifth plate, the gas distribution ratio control strategy can also maintain the purity of the product tightly. Because it is extremely difficult to adjust the gas phase distribution ratio in the actual industrial production, the main tower sensitive plate is chosen. The optimum control scheme for the fifth trays is EDWC without gas phase distribution ratio.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ028.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉立新;陳夢(mèng)琪;劉育良;王建新;孫蘭義;;共沸精餾隔壁塔與萃取精餾隔壁塔的控制研究[J];化工進(jìn)展;2017年02期
2 張青瑞;彭家瑤;張凱;;熱集成變壓分離碳酸二甲酯-甲醇的優(yōu)化與控制[J];化學(xué)工程;2017年01期
3 Zhishan Zhang;Qingjun Zhang;Guijie Li;Meiling Liu;Jun Gao;;Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation[J];Chinese Journal of Chemical Engineering;2016年11期
4 索瀟萌;戴昕;虞昊;張浩;葉青;;分隔壁萃取精餾塔分離乙酸乙酯-異丙醇[J];石油學(xué)報(bào)(石油加工);2016年01期
5 翟建;劉育良;李魯閩;王秋圓;孫蘭義;;萃取精餾分離苯/環(huán)己烷共沸體系模擬與優(yōu)化[J];化工學(xué)報(bào);2015年09期
6 劉育良;翟建;李魯閩;王秋圓;孫蘭義;;萃取精餾分離苯/環(huán)己烷共沸體系的控制策略[J];化工學(xué)報(bào);2015年09期
7 方靜;趙寒梅;祁建超;李春利;齊俊杰;郭佳佳;;隔壁塔節(jié)能效果研究(英文)[J];Chinese Journal of Chemical Engineering;2015年06期
8 李軍;王純正;馬占華;孫蘭義;;基于Aspen Plus和NSGA-Ⅱ的隔壁塔多目標(biāo)優(yōu)化研究[J];高;瘜W(xué)工程學(xué)報(bào);2015年02期
9 藺錫鈺;吳昊;沈本賢;凌昊;;Kaibel分壁精餾塔分離芳烴的穩(wěn)態(tài)和動(dòng)態(tài)模擬[J];化工學(xué)報(bào);2015年04期
10 辛燕平;趙明;夏銘;孟繼紅;姚芳蓮;許春建;;熱集成變壓精餾分離吡啶-水的控制研究[J];化學(xué)工程;2014年11期
相關(guān)博士學(xué)位論文 前1條
1 夏銘;用于分離共沸物的節(jié)能隔壁塔的設(shè)計(jì)與控制研究[D];天津大學(xué);2014年
相關(guān)碩士學(xué)位論文 前2條
1 王喬毅;甲縮醛/甲醇分離之萃取精餾與變壓精餾的設(shè)計(jì)與控制[D];天津大學(xué);2012年
2 曹海龍;乙酸乙酯—異丙醇共沸物分離方法研究[D];天津大學(xué);2009年
,本文編號(hào):2035035
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2035035.html