以嵌段共聚物為模板制備介孔二氧化鈦
發(fā)布時(shí)間:2018-06-18 09:30
本文選題:介孔TiO_2 + F-TiO_2 ; 參考:《濟(jì)南大學(xué)》2017年碩士論文
【摘要】:隨著石油、煤炭和天然氣等資源的減少、能源需求的不斷增加以及環(huán)境污染的加劇,能量轉(zhuǎn)換與儲(chǔ)存技術(shù)(如染料敏化太陽(yáng)能電池(DSCs)、燃料電池、鋰離子電池)和光催化降解有機(jī)污染物技術(shù)受到人們的高度重視并取得巨大進(jìn)展,但仍有許多科學(xué)問題仍阻礙該類技術(shù)需的發(fā)展。介孔二氧化鈦(TiO_2)是較好的電極材料,其性能的好壞能夠決定太陽(yáng)能電池的光電轉(zhuǎn)換效率;納米級(jí)的二氧化鈦還能作為光催化劑,對(duì)有機(jī)污染物有優(yōu)異的催化降解效果。所以,研究TiO_2納米材料的制備方法以提高其性能已成為研究的熱點(diǎn)之一。本論文首先用TiCl_4為原料,采用水熱法,經(jīng)過水解、沉淀、氧化、絡(luò)合以及回流結(jié)晶的過程制備了F摻雜的TiO_2納米粒子(F-TiO_2)。F摻雜的TiO_2納米粒子表現(xiàn)出了優(yōu)異的光催化性能,并對(duì)合成TiO_2納米粒子的各影響因素進(jìn)行了探究,得到了最佳的合成方案。其次,通過以嵌段共聚物F127為模板,鈦酸四異丙酯(TTIP)和TiCl_4為無(wú)機(jī)前驅(qū)體,利用溶膠-凝膠法合成有機(jī)-無(wú)機(jī)雜化TiO_2薄膜,經(jīng)焙燒除去嵌段共聚物,制備出介孔TiO_2;同時(shí)以F摻雜的TiO_2納米粒子與F127共組裝,制備出介孔TiO_2納米材料。(1)F摻雜TiO_2納米粒子:以TiCl_4為原料,首先水解制成溶膠-凝膠,在堿性條件下使其沉淀后,經(jīng)過濾重新分散到水中,通過H2O_2氧化制成高鈦酸溶液,在NaF存在下回流結(jié)晶,得到F-TiO_2棒狀納米粒子。在合成過程中不使用表面活性劑或封端劑。結(jié)果表明:NaF/TiCl_4的摩爾比在銳鈦礦型F-TiO_2納米粒子形態(tài)的形成中起重要作用;F-離子能進(jìn)入TiO_2的晶格,并在TiO_2的表面吸附。制備的F-TiO_2納米粒子,在UV和可見光照射下,都顯示出對(duì)亞甲基藍(lán)染料的高光催化活性,表明F-TiO_2納米粒子是廢水處理中污染物亞甲基藍(lán)染料的有效光催化降解催化劑。同時(shí)探討了影響TiO_2納米粒子形態(tài)和性能的其它因素,包括溫度、濃度以及其它鹵族元素,得出了最佳合成溫度為100℃,NaF/TiCl_4的摩爾比為4/1。(2)介孔TiO_2的制備:以嵌段共聚物F127在乙醇溶液中形成的膠束為模板,與TiO_2的前驅(qū)體TTIP在濃HCl中緩慢水解或TiCl_4在乙醇中形成的溶膠-凝膠為無(wú)機(jī)組分進(jìn)行共組裝,分別探究了F127/無(wú)機(jī)前驅(qū)體摩爾比、溶劑揮發(fā)速率、溶膠-凝膠的配置時(shí)間、膠體形成溫度、老化時(shí)間以及焙燒方式等因素,得出了F127/無(wú)機(jī)前驅(qū)體的最佳摩爾比,適當(dāng)?shù)厣呷芤旱臏囟燃皽p小溶劑的揮發(fā)速率,都有利于有序介孔TiO_2的形成。同時(shí)以F摻雜的TiO_2納米粒子與F127共組裝,制備介孔TiO_2納米材料,得到的介孔TiO_2平均孔徑為8.57 nm,孔體積為0.45 cm~3/g。
[Abstract]:As resources such as oil, coal and natural gas decrease, energy demand increases and environmental pollution intensifies, energy conversion and storage technologies (such as dyestuff sensitized solar cells, DSCsO, fuel cells, etc.), Lithium ion batteries (Li-ion batteries) and photocatalytic degradation of organic pollutants have been paid great attention to and great progress has been made. However, there are still many scientific problems that hinder the development of these technologies. Mesoporous titanium dioxide (TiO2) is a good electrode material, its performance can determine the photovoltaic conversion efficiency of solar cells, and nanometer titanium dioxide can be used as photocatalyst for the degradation of organic pollutants. Therefore, it has become one of the hotspots to study the preparation method of TIO _ 2 nanomaterials in order to improve their properties. In this paper, TiCl4 was first used as raw material, and through hydrolysis, precipitation, oxidation, complexation and refluxing crystallization, F-doped TiO2 nano-particles were prepared by hydrothermal method, and F-TiO-2 nanoparticles exhibited excellent photocatalytic properties. The factors affecting the synthesis of TIO _ 2 nanoparticles were investigated and the optimum synthesis scheme was obtained. Secondly, organic-inorganic hybrid TiO-2 films were synthesized by sol-gel method using block copolymer F127 as template, tetraisopropyl titanate TTIP) and TiCl4 as inorganic precursors, and block copolymers were removed by calcination. The mesoporous TiO-2 was prepared, and the F-doped TiO-2 nanoparticles were co-assembled with F127. The mesoporous TiO-2 nanomaterials were prepared by using TiCl4 as raw material, and TiCl4 was used as raw material to prepare sol-gel, which was precipitated under alkaline conditions. The perovskite solution was oxidized by H _ 2O _ 2 and refluxed and crystallized in the presence of NAF to obtain F-TiO2-like nanocrystalline particles. No surfactant or capping agent is used in the synthesis process. The results show that the mole ratio of w / naf-TiCl4 plays an important role in the formation of anatase F-TiO2 nanoparticles. F- ions can enter the lattice of TiO2 and adsorb on the surface of TiO2. The prepared F-TiO2 nanoparticles showed high photocatalytic activity for methylene blue dyes under UV and visible light irradiation, indicating that F-TiO-2 nanoparticles are effective photocatalytic degradation catalysts for methylene blue dyes in wastewater treatment. Other factors affecting the morphology and properties of TiO-2 nanoparticles, including temperature, concentration and other halogen elements, were also discussed. The optimum synthesis temperature is 100 鈩,
本文編號(hào):2035003
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/2035003.html
最近更新
教材專著