不同拓撲結構聚羧酸減水劑的制備及其應用研究
本文選題:減水劑 切入點:梳型 出處:《合肥工業(yè)大學》2017年碩士論文
【摘要】:隨著混凝土行業(yè)迅速發(fā)展,減水劑的應用也越來越廣泛。聚羧酸減水劑因具備小摻量,高減水率,環(huán)保等優(yōu)勢應用最為廣泛。在混凝土中,較其他類減水劑而言,添加聚羧酸減水劑后水灰比可顯著降低,且在較低的水灰比下仍然有比較高的流動度,故而提高混凝土強度。聚羧酸減水劑能通過靜電斥力和空間位阻效應提供水泥顆粒優(yōu)良的分散性能,并且不同的拓撲結構產(chǎn)生的空間位阻的大小不同,對減水劑應用性能會有不同的影響。本文采用不同的聚合方法調(diào)控分子結構,合成有不同拓撲結構聚羧酸減水劑,探究結構對性能的影響。1、采用含三羥基的三乙醇胺(TEA),與2溴-異丁酰溴反應(BIBB)制備星型引發(fā)劑(TEA-Br(3),后采用原子轉移自由基聚合法,澳化亞銅/2,2-聯(lián)吡啶為催化體系,聚合甲基丙烯酸羥乙酯(HEMA),丙烯酸(AA)制備星型聚羧酸減水劑(TEA-Br(3)-PHEMA-AA)。采用同樣的方法用乙二醇(EG)替代TEA合成梳型聚羧酸減水劑(EG-Br(2)-PHEMA-AA)。測試表明:成功合成星型引發(fā)劑(TEA-Br(3))和星型聚羧酸減水劑,引發(fā)劑(EG-Br(2))和梳型聚羧酸減水劑,通過凈漿流動度確定了最佳聚合度和反應時間;與梳型減水劑相比,星型減水劑有更高凈漿流動度,并且7d星型減水劑混凝土抗壓強度提高9-10%。2、選取含四羥基的季戊四醇(PER),與2溴-異丁酰溴反應(BIBB)合成四臂引發(fā)劑(PER-Br(4),再利用原子自由基聚合法,以溴化亞銅/2,2-聯(lián)吡啶為催化體系,與甲基丙烯酸羥乙酯(HEMA),丙烯酸(AA)聚合制備四臂聚羧酸減水劑(PER-Br(4)-PHEMA-AA)。測試表明:四臂聚羧酸減水劑成功合成,通過凈漿流動度確定了最佳反應時間和聚合度,與星型聚羧酸減水劑相比,其漿體體系有更好的分散性,且7d四臂聚羧酸減水劑混凝土抗壓強度提高3-4%。3、木糖醇(MTC)和丙烯酰氯進行反應,N-N二甲基甲酰胺(DMF)為溶劑,制備單體木糖醇丙烯酸酯(AMTC),在過硫酸銨引發(fā)劑作用下,與甲基丙烯酸羥乙酯(HEMA),丙烯酸(AA),甲基烯丙基聚氧乙烯醚(TPEG)自由基聚合制備木糖醇改性聚羧酸減水劑。測試表明:成功制備木糖醇丙烯酸酯(AMTC)和木糖醇改性聚羧酸減水劑,從木糖醇丙烯酸酯用量,反應溫度,反應時間,引發(fā)劑用量探究最佳合成條件,較普通聚羧酸減水劑而言,漿體體系有更好凈漿流動度,7d混凝土抗壓強度提高11-12%。
[Abstract]:With the rapid development of concrete industry, the application of water reducing agent is more and more extensive.Polycarboxylic acid water reducing agent is widely used because of its advantages of low content, high water reducing rate and environmental protection.Compared with other water-reducing agents, the water-cement ratio of concrete with polycarboxylic acid water reducing agent can be decreased significantly, and the flow degree is still higher at lower water-cement ratio, so the strength of concrete is improved.Polycarboxylic acid superplasticizer can provide excellent dispersion properties of cement particles through electrostatic repulsion and steric resistance effect, and different topological structures have different spatial steric resistance, which will have different effects on the application performance of water reducer.In this paper, polycarboxylic acid superplasticizer with different topological structure is synthesized by using different polymerization methods to regulate molecular structure.The star polycarboxylic acid superplasticizer (TEA-Br3PHEMA-AA) was prepared by polymerization of hydroxyethyl methacrylate (Hema) and acrylic acid (AAA).The combed polycarboxylic acid superplasticizer was synthesized by using ethylene glycol (EGG) instead of TEA in the same way.The results showed that star initiator TEA-Br3), star-like polycarboxylic acid superplasticizer, initiator EG-Br2) and comb-type polycarboxylic acid water reducer were successfully synthesized. The optimum polymerization degree and reaction time were determined by the net slurry mobility, and compared with comb-type water reducer.A four-arm polycarboxylic acid superplasticizer, PER-Br-4- PHEMA-AAN, was prepared by polymerization of cuprous bromide / 2o 2-bipyridine with hydroxyethyl methacrylate (Hema) and acrylic acid (AAA).The results showed that the four-arm polycarboxylic acid superplasticizer was successfully synthesized, and the optimum reaction time and polymerization degree were determined by the flow degree of the slurry. Compared with the star-shaped polycarboxylic acid superplasticizer, the slurry system had better dispersion.The compressive strength of 4-arm polycarboxylic acid superplasticizer concrete was increased by 3-40.3.The monomer xylitol acrylates (AMTCU) was prepared in the presence of ammonium persulfate initiator in the presence of N-N dimethylformamide (DMF) as solvent.Xylitol modified polycarboxylic acid water reducer was prepared by free radical polymerization with hydroxyethyl methacrylate (Hema), acrylic acid (AA) and methyl allyl polyoxyethylene ether (TPEG).The results showed that xylitol acrylates (AMTC) and xylitol modified polycarboxylic acid water reducers were successfully prepared. The optimum synthetic conditions were explored from the amount of xylitol acrylate, reaction temperature, reaction time and initiator dosage, compared with common polycarboxylic acid water reducers.The concrete compressive strength of the slurry system is increased by 11-12 when the flow degree of the slurry is 7 days.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU528.042.2
【參考文獻】
相關期刊論文 前10條
1 張黎;張潔;陳剛;楊乃旺;;羥甲基化木質(zhì)素磺酸鹽添加劑對鉆井液性能的影響[J];化學研究;2014年04期
2 郭遠臣;謝波;王鴻東;董濤;劉永永;李野;胡春輝;;滲透結晶型高抗?jié)B生態(tài)水工混凝土性能研究[J];混凝土;2013年06期
3 孫振平;羅瓊;;酰胺類聚羧酸系減水劑的合成工藝及性能研究[J];建筑材料學報;2012年01期
4 楊曉玲;趙琰森;;聚羧酸系減水劑的應用技術[J];蘭州工業(yè)高等?茖W校學報;2011年04期
5 蘇瑜;龐浩;蔣冰艷;王斌;廖兵;;聚羧酸系混凝土減水劑的研究進展及發(fā)展趨勢[J];現(xiàn)代化工;2011年04期
6 李書英;李曉東;;聚羧酸系高性能減水劑在南水北調(diào)工程中的應用[J];河北化工;2011年04期
7 韓晶;程發(fā);魏玉萍;;原子轉移自由基聚合方法在纖維素及其衍生物改性方面的應用Ⅰ[J];高分子通報;2009年12期
8 莫亞莉;卜洪忠;陳日清;李守海;;可自由基聚合纖維素衍生物合成的研究進展[J];現(xiàn)代化工;2009年S2期
9 寇英鷺;趙冰;邱紅;王欣;郭威峰;賈曉宇;王偉;;聚羧酸系高性能減水劑的作用機理與發(fā)展現(xiàn)狀[J];遼寧科技大學學報;2009年03期
10 周志威;呂生華;李芳;;聚羧酸系高效減水劑的研究進展[J];化學建材;2006年04期
相關碩士學位論文 前7條
1 呂曉勇;天然多羧基化合物改性聚羧酸系減水劑的合成研究[D];合肥工業(yè)大學;2013年
2 王敏;直接發(fā)泡法制備結構可控泡沫陶瓷[D];天津大學;2012年
3 劉道勝;CTF增效劑在商品混凝土中的應用性能研究[D];重慶大學;2012年
4 趙j;新型酰胺多胺聚羧酸減水劑的制備與性能[D];北京工業(yè)大學;2009年
5 劉金華;低水泥耐火澆注料外加劑的研究[D];西安建筑科技大學;2006年
6 林源智;環(huán)狀三硫酯存在下的自由基聚合反應研究[D];浙江大學;2005年
7 賈祥道;水泥主要特性對水泥與減水劑適應性影響的研究[D];中國建筑材料科學研究院;2002年
,本文編號:1714907
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1714907.html