碳基過渡金屬碳化物介孔材料及其電催化性能的研究
本文選題:過渡金屬碳材料 切入點(diǎn):離子液體 出處:《華東師范大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:為了保持人類社會(huì)的可持續(xù)發(fā)展,人們迫切需要開發(fā)利用清潔的能源。燃料電池(Fuel Cell)是一種將存在于氧化劑與燃料中的化學(xué)能直接轉(zhuǎn)化為電能的技術(shù),具有高能量密度和清潔的產(chǎn)能過程。然而燃料電池的大規(guī)模商業(yè)化中所遇到的瓶頸問題是電池陰極上非貴金屬氧還原催化劑的性能不能滿足實(shí)用的需要。因此,開發(fā)成本低,儲(chǔ)量豐富的非貴金屬高性能催化劑代替貴金屬材料是推動(dòng)燃料電池的大規(guī)模商業(yè)化的有效途徑。過渡金屬碳化物材料具有資源豐富、價(jià)格低廉、高導(dǎo)電性、高硬度、高熔點(diǎn)、優(yōu)越的熱穩(wěn)定性和酸堿穩(wěn)定性,以及類鉑的電子結(jié)構(gòu)和催化能力,因而在電極材料領(lǐng)域具有很大的應(yīng)用潛力和研究價(jià)值。但現(xiàn)有的研究中對(duì)于過渡金屬碳化物材料的制備合成及其電催化性能的研究相對(duì)較少。我們利用多種金屬鹽功能化的離子液體、鈦-氮氧化鈦基電極極板以及硬模版SBA-15分子篩等為基本材料,采用簡單的涂覆熱解法和灌注-熱解-刻蝕法,制備了一系列新型負(fù)載過渡金屬碳化物的鈦-氮氧化鈦基復(fù)合板基電極材料和碳基過渡金屬碳化物有序介孔材料。并對(duì)所制備的材料進(jìn)行了系統(tǒng)的分析與表征,研究了這些材料的電化學(xué)催化的性能,結(jié)果表明這些材料的電催化活性明顯高于已報(bào)道同類材料中的最佳催化活性。具體研究內(nèi)容如下:1.采用離子交換法設(shè)計(jì)制備了兩種新型的過渡金屬功能化的離子液體[Hmim]_2[Cr_2O_7](1-庚基-3-甲基咪唑鉻酸鹽)、[Bmim]_3[VO_4](1-丁基-3-甲基咪唑釩酸鹽),按照文獻(xiàn)合成了兩種過渡金屬功能化的離子液體[Bmim]_2[MoO_4](1-丁基-3-甲基咪唑鉬酸鹽)、[Bmim]_2[WO_4](1-丁基-3-甲基咪唑鉬酸鹽),并將這四種離子液體使用紅外光譜(IR)、核磁共振譜(NMR)以及熱重-差熱分析(TG/DTA)的分析技術(shù)進(jìn)行了系統(tǒng)的表征。確定了所制備離子液體的分子結(jié)構(gòu)及其熱解性質(zhì)。2.利用高純鈦在氧氣中加熱再以三聚氰胺為氮源在惰性氣體中加熱的方法制備了鈦-氮氧化鈦極板。再利用離子液體涂覆-熱解法成功將碳化鉬、碳化鎢、碳化鉻和碳化釩粒子負(fù)載于鈦-氮氧化鈦極板表面,制得了Ti-TiN_xO_2-x-MoC、Ti-TiN_xO_2-x-WC、Ti-TiN_xO_2-x-Cr_7C_3、Ti-TiN_xO_2-x-V_8C_7等一系列復(fù)合電極材料。利用X射線粉末衍射(XRD)、掃描電子顯微鏡(SEM)、能譜(EDS)、X射線光電子能譜分析(XPS)等手段對(duì)上述電極進(jìn)行了系統(tǒng)的表征,并進(jìn)一步研究了上述復(fù)合電極材料在析氫反應(yīng)、氧還原反應(yīng)和乙醇的選擇性部分氧化反應(yīng)中的催化活性,與文獻(xiàn)中報(bào)道的同類過渡金屬碳化物相比,析氫起始電位提高了 20%-50%,氧還原起始電位提高了 10%-20%;與文獻(xiàn)中報(bào)道的鉑電極相比,對(duì)氧化產(chǎn)物乙醛的選擇性提高18%-23%,證明以離子液體為前驅(qū)體制備的鈦-氮氧化鈦基過渡金屬碳化物復(fù)合電極是一種多功能電極催化材料。3.將鉬酸鹽離子液體和SBA-15分子篩在常溫和空氣條件下研磨浸漬,浸漬后的樣品在氮?dú)庵屑訜岷罂涛g掉分子篩,即可得到大量的形貌一致的含有碳化鉬納米晶的碳基介孔材料。利用XRD、SEM、TEM、XPS等方法對(duì)上述碳化鉬介孔材料進(jìn)行了系統(tǒng)的表征,結(jié)果顯示納米晶尺寸均一,粒徑約為3-5nm,材料比表面積為132m2 g-1,在析氫和氧還原反應(yīng)中表現(xiàn)出了良好的雙功能電催化劑性能,析氫反應(yīng)的起始電位優(yōu)于文獻(xiàn)中的碳化鉬納米材料20-112 mV,氧還原反應(yīng)的起始電位高于文獻(xiàn)報(bào)道中的碳化鉬材料90-220 mV,并在酸和堿兩種環(huán)境下均可保持性能穩(wěn)定。4.發(fā)展了基于鎢酸鹽離子液體合成碳化鎢納米碳基有序介孔材料的方法。通過研磨-熱解-刻蝕的方法即可一次制備大量的碳化鎢碳基介孔材料,介孔結(jié)構(gòu)由碳包裹的碳化鎢納米晶組成,納米晶尺寸均約為5 nm,比表面積144 m2 g-1,這種碳化鎢材料可作為類鉑的非貴金屬雙功能電催化劑,應(yīng)用于析氫和氧還原反應(yīng),結(jié)果表明析氫反應(yīng)的起始電位優(yōu)于文獻(xiàn)中的各種形貌的碳化鎢納米材料20-230mV,氧還原反應(yīng)的起始電位高于文獻(xiàn)報(bào)道同類材料10-300 mV,并且該種納米碳化鎢碳基介孔材料在酸、堿環(huán)境下顯示了穩(wěn)定的電化學(xué)性能。5.報(bào)道了碳化鉻納米介孔材料的合成方法;阢t酸鹽離子液體的特性,采用研磨-熱解-刻蝕的方法,獲取了由碳化鉻納米晶構(gòu)成的碳基介孔碳化鉻材料,碳化鉻納米晶尺寸約為2-4 nm,比表面積149 m~2 g~(-1)。該介孔碳化鉻材料在析氫和氧還原反應(yīng)中表現(xiàn)出色的催化活性,析氫反應(yīng)的起始電位優(yōu)于文獻(xiàn)中的碳化鉻材料70-200 mV,接近Pt的析氫催化活性。氧還原反應(yīng)的起始電位高于文獻(xiàn)中碳化鉻材料80 mV,在酸、堿環(huán)境下電化學(xué)性能穩(wěn)定。6.以釩酸鹽離子液體為前驅(qū)體采用灌注刻蝕技術(shù)制備合成了碳化釩納米晶構(gòu)成的碳基介孔材料,碳化釩納米晶尺寸約為5 nm,材料比表面積為133 m~2 g~(-1),作為非貴金屬雙功能電催化材料,將其應(yīng)用于析氫和氧還原反應(yīng)中,析氫反應(yīng)的起始電位優(yōu)于文獻(xiàn)中碳化釩材料360 mV,氧還原反應(yīng)的起始電位高于文獻(xiàn)中碳化釩130 mV,酸和堿環(huán)境中均可保持性能穩(wěn)定。綜上所述,基于功能化離子液體合成過渡金屬碳材料的方法開創(chuàng)了一條合成納米過渡金屬碳化物材料的新途徑。此方法適用于多種過渡金屬碳化物的合成,簡單易行,能耗低,并且獲得的多種過渡金屬碳化物極板材料和過渡金屬碳化物納米粒子組成的碳基介孔材料的電催化性能十分優(yōu)良,在燃料電池領(lǐng)域潛在著廣闊的實(shí)用前景。
[Abstract]:In order to maintain the sustainable development of human society, there is an urgent need for the development and utilization of clean energy. Fuel cell (Fuel Cell) is a will exists in the oxidizer and fuel can be directly converted into electricity technology, the production process has high energy density and clean. However the bottleneck problem of large-scale commercial fuel cell encountered in the battery cathode on performance of non noble metal catalyst for oxygen reduction cannot meet the practical needs. Therefore, the development of low cost, high performance non noble metal catalyst rich instead of precious metal materials is an effective way to promote the large-scale commercial fuel cell. The transition metal carbide materials with abundant resources, price low, high conductivity, high hardness, high melting point, excellent thermal stability and pH stability, and platinum electronic structure and catalytic ability in electrode material field The application and research of great potential value. But the existing studies for the preparation of synthesis and catalytic properties of transition metal carbide electric material is relatively small. We use a variety of functional ionic liquid metal salt, titanium and nitrogen titanium oxide electrode and die version of SBA-15 molecular sieve as the basic material, using a simple coating pyrolysis and pyrolysis - reperfusion etching method, a series of novel supported transition metal carbide titanium titanium oxynitride composite plate and carbon based electrode materials of transition metal ordered mesoporous materials were prepared. And the prepared materials were analyzed and characterized the properties of the system, the electrochemical catalysis of these materials the results show that the electrocatalytic activity of these materials has the best catalytic activity was significantly higher than that reported in similar materials. The specific contents are as follows: 1. using the ion exchange method design Ionic liquid [Hmim]_2[Cr_2O_7] two transition metal model of the production function (1- -3- heptyl methyl imidazole chromate, [Bmim]_3[VO_4] (1-) butyl -3- methylimidazolium vanadate), according to the synthesis of the ionic liquid [Bmim]_2[MoO_4] two transition metal functionalized (1- butyl -3- methylimidazolium molybdate [Bmim]_2[WO_4] (1-), butyl -3- 2-methylimidazole), molybdate and the four kinds of ionic liquids using infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TG/DTA) analysis of the technology of the system characterized the molecular structure and properties of.2. prepared by pyrolysis of ionic liquid by heating in high purity titanium oxygen prepared titanium plate and titanium oxynitride using melamine as nitrogen source for heating in an inert gas in the system. Then using ionic liquid coating pyrolysis method successfully molybdenum carbide, tungsten carbide, chromium carbide and vanadium carbide particles Supported on titanium and nitrogen titanium oxide electrode surface, prepared with Ti-TiN_xO_2-x-MoC, Ti-TiN_xO_2-x-WC, Ti-TiN_xO_2-x-Cr_7C_3, Ti-TiN_xO_2-x-V_8C_7 and a series of composite electrode materials. By using X ray powder diffraction (XRD), scanning electron microscopy (SEM), energy spectrum (EDS), X ray photoelectron spectroscopy (XPS) characterization of the electrode system by means of further research and the composite electrode materials for hydrogen evolution catalytic activity in selective oxidation and oxygen reduction reaction in ethanol, compared with other transition metal carbides are reported, the initial analysis improves the 20%-50% potential of the hydrogen, oxygen reduction starting potential increase 10%-20%; compared with the platinum electrode literature in the report, the selective oxidation products of acetaldehyde increased 18%-23%, proved using ionic liquid as a precursor for the preparation of titanium and nitrogen titanium oxide based transition metal carbide composite electrode Is a kind of multifunctional electrode catalytic materials.3. molybdate ionic liquid and SBA-15 molecular sieve at room temperature and air abrasive impregnation, after impregnation of samples heated in nitrogen after etching can be obtained by molecular sieve carbon based mesoporous materials containing molybdenum carbide nanocrystals are consistent with the large number of morphology. The use of XRD, SEM. TEM, XPS and other methods were characterized on the molybdenum carbide mesoporous materials, results show that the nanocrystals with uniform size, the size is about 3-5nm, the surface area of the material is 132m2 g-1, the hydrogen and oxygen reduction reaction showed a good performance of electric double function catalyst, molybdenum carbide nano materials 20-112 mV the initial potential is better than that of the hydrogen evolution reaction in the literature, the onset potential for oxygen reduction is higher than that of molybdenum carbide material 90-220 mV reported in the literature, and in the two kinds of acid and alkali environment can maintain stable performance of.4. development based on tungstate from Methods the liquid synthesis of tungsten carbide nano carbon based ordered mesoporous materials. Through grinding method - pyrolysis etching a preparation of a large number of tungsten carbide carbon mesoporous material, mesoporous structure composed of nano crystalline tungsten carbide coated carbon composition, the nanocrystal size was about 5 nm. The specific surface area of 144 m2 g-1, the tungsten carbide material can be used as a platinum non noble metal bifunctional electrocatalyst, applied to hydrogen and oxygen reduction reaction. The results show that tungsten carbide nano materials with various morphologies of 20-230mV hydrogen evolution reaction in the literature is better than the initial potential, the oxygen reduction reaction initiation potential is higher than that reported similar materials 10-300 mV and, the nano tungsten carbide carbon based mesoporous materials in acid, alkali environment shows the electrochemical properties of.5. stable synthesized method of chromium carbide nano mesoporous materials. The characteristics of chromate based on ionic liquids, the grinding heat - moment solution Inhibition method, the mesoporous carbon chromium carbide material composed of nanocrystalline chromium carbide, chromium carbide nano crystal size is about 2-4 nm, the specific surface area of 149 m~2 g~ (-1). The mesoporous chromium carbide material reduction in the outstanding performance of the catalytic activity in hydrogen and oxygen, chromium carbide materials 70-200 mV of the initial potential of hydrogen evolution reaction is superior to that of the literature, the heractivity close to Pt. The onset potential for oxygen reduction is higher than that of chromium carbide materials in the literature in 80 mV,.6. acid, stable electrochemical performance of alkali environment with vanadate ionic liquids as precursor to synthesis of carbon based mesoporous materials Carbide vanadium is composed of nanocrystals used in etching technology, vanadium carbide nano crystal size is about 5 nm, the surface area of the material is 133 m~2 g~ (-1), as a non noble metal bifunctional catalytic materials and its application in hydrogen and oxygen reduction reaction, hydrogen evolution reaction is better than the initial potential Xian vanadium carbide material 360 mV, the initial potential of oxygen reduction reaction is higher than that in the literature of vanadium carbide 130 mV can maintain stable performance, acid and alkali environment. To sum up, the method of functional ionic liquids synthesis of transition metal based carbon materials created a new approach to synthesis of nano transition metal carbide materials. The synthesis of this method applicable to a variety of transition metal carbides has the advantages of simple operation, low energy consumption, the electrocatalytic properties of carbon based materials and pore obtained various transition metal carbide electrode material and transition metal carbide nanoparticles is very excellent, in the field of fuel cell potential broad practical prospect.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36;TM911.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王家良;胡國榮;彭忠東;杜柯;曹雁冰;;還原碳化法制備超細(xì)碳化鉻粉末[J];粉末冶金材料科學(xué)與工程;2016年04期
2 常進(jìn)法;肖瑤;羅兆艷;葛君杰;劉長鵬;邢巍;;水電解制氫非貴金屬催化劑的研究進(jìn)展[J];物理化學(xué)學(xué)報(bào);2016年07期
3 郭荻子;楊英麗;趙彬;趙恒章;吳金平;蘇航標(biāo);;Ti35合金在沸騰硝酸中鈍化膜及過渡層形成及組成分析[J];鈦工業(yè)進(jìn)展;2015年01期
4 石磊;徐艷;邢立淑;李湘萍;楊成;林森;;無外加酸體系中AlSBA-15為模板,有序介孔炭材料CMK-3的合成與表征[J];新型炭材料;2014年06期
5 湯金華;;幾種工業(yè)制氫方案的比選[J];有色冶金設(shè)計(jì)與研究;2014年05期
6 朱啟安;吳堯;胡耐根;倪彬;孫玉環(huán);吳紅娟;;液相直接沉淀法制備Ag_3VO_4及其可見光催化性能研究[J];功能材料;2013年05期
7 李艷艷;饒路;姜艷霞;劉子立;賀春蘭;張斌偉;孫世剛;;多壁碳納米管負(fù)載鉑立方體的制備及對(duì)乙醇電催化氧化性能[J];高等學(xué);瘜W(xué)學(xué)報(bào);2013年02期
8 王羽;董會(huì);耿靚;隗罡;朱月香;謝有暢;;雙峰孔分布薄壁中孔碳的便捷制備[J];物理化學(xué)學(xué)報(bào);2012年06期
9 薛正良;陳志超;王煒;余岳;劉強(qiáng);李平;;碳熱還原氮化一步法制備釩氮合金工藝研究[J];武漢科技大學(xué)學(xué)報(bào);2012年03期
10 江莉龍;馬永德;曹彥寧;楊陽;魏可鎂;;改性鋁土礦載體負(fù)載Ru催化劑上的水煤氣變換制氫[J];物理化學(xué)學(xué)報(bào);2012年03期
相關(guān)博士學(xué)位論文 前8條
1 錢穎丹;摻雜碳基非貴金屬催化劑的制備及催化氧氣電化學(xué)還原的機(jī)制[D];南京師范大學(xué);2016年
2 李進(jìn)春;金屬/過渡金屬碳化物界面勢的反演及界面穩(wěn)定性的理論研究[D];北京科技大學(xué);2015年
3 郎曉川;熔鹽中陰極自燒結(jié)電化學(xué)還原制備鈦、釩及鉻碳化物研究[D];東北大學(xué);2014年
4 王高偉;碳化鉬基催化劑上低溫水煤氣變換反應(yīng)的研究[D];天津大學(xué);2013年
5 施沈一;功能化氧化型離子液體的性能研究及應(yīng)用[D];華東師范大學(xué);2011年
6 朱君;具有多級(jí)結(jié)構(gòu)的過渡金屬化合物微/納米材料的制備及其性能研究[D];上海交通大學(xué);2010年
7 顏練武;納米V_8C_7粉末的結(jié)構(gòu)、性能和應(yīng)用研究[D];中南大學(xué);2008年
8 秦好麗;氮摻雜二氧化鈦的制備及可見光下對(duì)有機(jī)物的降解研究[D];華南理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 施金樂;基于過渡金屬電解水催化劑的制備及性能研究[D];重慶師范大學(xué);2016年
2 秦瑞杰;非貴金屬材料作為析氫電催化劑的研究[D];天津大學(xué);2015年
3 王巖巖;多級(jí)孔碳材料的制備與表征[D];河北科技大學(xué);2014年
4 徐坤;碳及碳氮共摻雜二氧化鈦納米管的制備與電化學(xué)性能研究[D];昆明理工大學(xué);2014年
5 梁潤娟;離子液體環(huán)境下固體酸催化纖維素降解的研究[D];浙江師范大學(xué);2013年
6 羅小峰;鈦表面無氫滲碳層耐腐蝕性能研究[D];東北大學(xué);2012年
7 王曉麗;新型Pd-Ce/γ-Al_2O_3-TiO_2催化劑的結(jié)構(gòu)及其乙醇乙醛的完全氧化性能研究[D];太原理工大學(xué);2012年
8 陳佑劍;常見過渡金屬碳化物的制備及其性能研究[D];溫州大學(xué);2012年
9 李亮;硼和硼氮共摻雜二氧化鈦的光電性質(zhì)研究[D];哈爾濱工業(yè)大學(xué);2011年
10 刁磊;清潔能源產(chǎn)業(yè)的技術(shù)路線圖研究[D];大連理工大學(xué);2010年
,本文編號(hào):1624288
本文鏈接:http://sikaile.net/kejilunwen/huaxuehuagong/1624288.html