Ca摻雜的CuBi 2 O 4 材料制備及其在剛果紅可見光光催化降解中的應用
發(fā)布時間:2024-04-06 22:39
在本研究中,通過一步水熱法成功地合成了純相尖晶石型Ca摻雜的CuBi2O4氧化物(x=0.00,0.05,0.1,0.15)。用x射線衍射(XRD)對合成的納米顆粒進行表征以研究材料的結(jié)晶度和顆粒大小。用場發(fā)射掃描電子顯微鏡(FESEM)對合成材料的形貌進行研究。采用能量色散X射線光譜儀(EDX)與場發(fā)射掃描電子顯微鏡(FESEM)對其化學組成和元素映射進行了研究。利用光致發(fā)光(PL)研究了電子空穴對的復合行為。用UV型可見漫反射分光光度計(DRS)測定了材料的吸收區(qū)。以在光照條件下去除水溶液中的有毒染料剛果紅測試了該光催化劑的光催化活性。在所有合成的材料中,Ca0.1Cu.95Bi2O4降解效率最高,降解常數(shù)高,降解時間最短。純CuBi2O4在輻照70分鐘內(nèi)降解染色剛果紅效率為46%,而Ca0.1Cu0.95Bi2O4在照射70分鐘內(nèi)光降解率為82%。此外,研究了六種實驗參數(shù),包括輻照時間,催化劑用量,pH值,H2O2的影響,無機鹽的影響以及攪拌速度對剛果紅的降解效率的影響。結(jié)果表明,在0.6 mL H2O2的存在下,輻照60分鐘內(nèi)的最大光催化活性為94%。
【文章頁數(shù)】:70 頁
【學位級別】:碩士
【文章目錄】:
學位論文數(shù)播集
Acknowledgment
ABSTRACT
摘要
CHAPTER 1 Introduction
1.1 Introduction
1.2 Literature review
1.3 Photocatalysis
1.4 Types of photocatalysis
1.4.1 Homogenous photocatalysis
1.4.2 Heterogeneous photo-catalysis
1.4.3 Redox reaction in photo-catalysis
1.4.3.1 The Oxidation reactions in heterogeneous photocatalysis
1.4.3.2 The reduction reaction in heterogeneous photocatalysis
1.5 Mechanism of photo-catalysis
1.6 Hetero junction
1.6.1 Types of Heterojunction
1.6.1.1 Type Ⅰ heterojunction
1.6.1.2 Type Ⅱ heterojunction
1.6.1.3 p-n heterojunction
1.6.1.4 Schottky heterojunction
1.6.1.5 Z-scheme heterojunction
1.6.1.6 Elemental doping
1.7 Nanoparticle
1.8 Nanoparticles used in research
1.8.1 CuBi2O4 and Ca doped CuBi2O4
1.8.1.1 Crystallographic parameter of CuBi2O4
1.8.1.2 Structure of CuBi2O4
1.9 Congo red
1.9.1 Properties of Congo red
1.9.2 The Structure of Congo red
1.9.3 Congo red at different pH
1.9.4 Advantages of Congo red
1.9.5 Disadvantages
1.10 Objectives of our work
CHAPTER 2 Experimental and Results
2.1 EXPERIMENTAL AND RESULTS
2.1.1 Chemicals
2.1.2 Instruments and Equipment
2.1.2.1 Morphological characterization
2.1.2.2 The X-ray diffraction
2.1.2.3 Photo-luminescence Analysis
2.1.2.4 UV-visible diffuse reflectance spectroscopy (DRS) Analysis
2.1.2.5 UV-visible analysis
2.1.3 Preparation of CuBi2O4
2.1.3.1 Reaction mechanism
2.1.4 Synthesis of CaxCu(1-x)Bi2O4
2.1.5 Preparation of Congo red dye solution
2.1.5.1 Preparation of stock solution
2.1.5.2 Preparation of standard solution
2.1.6 Determination of maximum wavelength (λ max) for congo red at pH 7
2.1.7 Calibration curve or standard Calibration of congo red solution
2.1.8 Determination of percentage degradation of Congo red by using CuBi2O4
2.2 Characterization
2.2.1 The Powder x-ray diffraction (PXRD) analysis
2.2.2 Morphological analysis (Scanning electron microscopy)
2.2.3 Energy dispersive x-ray electron microscopy (EDS) Analysis and elementalmapping
2.2.4 Photoluminescence (PL) spectra of CuBi2O4 and Ca0.1Cu0.9Bi2O4
2.2.5 UV-visible diffuse reflection spectrum (DRS) characterization
2.2.6 Band gap energy of CuBi2O4 and CaxCu1-xBi2O4
2.3 Photocatalytic activity
2.3.1 Photocatalytic degradation of congo red by CuBi2O4 and CaxCu1-xBi2O4
2.3.2 Effect of catalyst amount on photocatalytic degradation of congo red
2.3.3 Effect of initial concentration on photocatalytic degradation of Congo red
2.3.4 Effect of pH on photocatalytic degradation of Congo red
2.3.5 Effect of H2O2 on photocatalytic decomposition of Congo red
2.3.6 Effect of agitation speed
2.3.7 Effect of inorganic salts on photocatalytic degradation of Congo red
2.3.7.1 Effect of sodium chloride NaCl
2.3.7.2 Effect of Na2SO4 on photocatalytic degradation of Congo red
2.3.8 Reusibility or Number of cycle
CHAPTER 3 Conclusion
3.1 CONCLUSION
3.2 Outlook
REFRENCES
碩士研究生學位論文答辯委員會決議書
本文編號:3947268
【文章頁數(shù)】:70 頁
【學位級別】:碩士
【文章目錄】:
學位論文數(shù)播集
Acknowledgment
ABSTRACT
摘要
CHAPTER 1 Introduction
1.1 Introduction
1.2 Literature review
1.3 Photocatalysis
1.4 Types of photocatalysis
1.4.1 Homogenous photocatalysis
1.4.2 Heterogeneous photo-catalysis
1.4.3 Redox reaction in photo-catalysis
1.4.3.1 The Oxidation reactions in heterogeneous photocatalysis
1.4.3.2 The reduction reaction in heterogeneous photocatalysis
1.5 Mechanism of photo-catalysis
1.6 Hetero junction
1.6.1 Types of Heterojunction
1.6.1.1 Type Ⅰ heterojunction
1.6.1.2 Type Ⅱ heterojunction
1.6.1.3 p-n heterojunction
1.6.1.4 Schottky heterojunction
1.6.1.5 Z-scheme heterojunction
1.6.1.6 Elemental doping
1.7 Nanoparticle
1.8 Nanoparticles used in research
1.8.1 CuBi2O4 and Ca doped CuBi2O4
1.9.1 Properties of Congo red
1.9.2 The Structure of Congo red
1.9.3 Congo red at different pH
1.9.4 Advantages of Congo red
1.9.5 Disadvantages
1.10 Objectives of our work
CHAPTER 2 Experimental and Results
2.1 EXPERIMENTAL AND RESULTS
2.1.1 Chemicals
2.1.2 Instruments and Equipment
2.1.2.1 Morphological characterization
2.1.2.2 The X-ray diffraction
2.1.2.3 Photo-luminescence Analysis
2.1.2.4 UV-visible diffuse reflectance spectroscopy (DRS) Analysis
2.1.2.5 UV-visible analysis
2.1.3 Preparation of CuBi2O4
2.1.4 Synthesis of CaxCu(1-x)Bi2O4
2.1.5.1 Preparation of stock solution
2.1.5.2 Preparation of standard solution
2.1.6 Determination of maximum wavelength (λ max) for congo red at pH 7
2.1.7 Calibration curve or standard Calibration of congo red solution
2.1.8 Determination of percentage degradation of Congo red by using CuBi2O4
2.2.1 The Powder x-ray diffraction (PXRD) analysis
2.2.2 Morphological analysis (Scanning electron microscopy)
2.2.3 Energy dispersive x-ray electron microscopy (EDS) Analysis and elementalmapping
2.2.4 Photoluminescence (PL) spectra of CuBi2O4 and Ca0.1Cu0.9Bi2O4
2.2.6 Band gap energy of CuBi2O4 and CaxCu1-xBi2O4
2.3.1 Photocatalytic degradation of congo red by CuBi2O4 and CaxCu1-xBi2O4
2.3.3 Effect of initial concentration on photocatalytic degradation of Congo red
2.3.4 Effect of pH on photocatalytic degradation of Congo red
2.3.5 Effect of H2O2 on photocatalytic decomposition of Congo red
2.3.6 Effect of agitation speed
2.3.7 Effect of inorganic salts on photocatalytic degradation of Congo red
2.3.7.1 Effect of sodium chloride NaCl
2.3.7.2 Effect of Na2SO4 on photocatalytic degradation of Congo red
2.3.8 Reusibility or Number of cycle
CHAPTER 3 Conclusion
3.1 CONCLUSION
3.2 Outlook
REFRENCES
碩士研究生學位論文答辯委員會決議書
本文編號:3947268
本文鏈接:http://sikaile.net/kejilunwen/huaxue/3947268.html
最近更新
教材專著