氧化構(gòu)建含氮雜環(huán)及C-H活化在芳基加成反應(yīng)中的應(yīng)用研究
發(fā)布時(shí)間:2020-12-21 15:52
有機(jī)合成的策略主要是基于分子中官能團(tuán)之間的相互轉(zhuǎn)化,或者是具有不同化學(xué)活性的結(jié)構(gòu)之間的轉(zhuǎn)化。對(duì)反應(yīng)活性較差的C–H鍵實(shí)現(xiàn)直接官能團(tuán)化來(lái)構(gòu)建新的C–C鍵或是C–Hetero鍵是一類非常具有吸引力的反應(yīng)類型,這種簡(jiǎn)單的化學(xué)反應(yīng)能夠方便快捷的得到目標(biāo)化合物,與此同時(shí)還可以避免傳統(tǒng)合成方法中需要預(yù)先安裝官能團(tuán)這一過(guò)程。但是,由于這類碳?xì)滏I高度穩(wěn)定,進(jìn)行此類轉(zhuǎn)換常需要嚴(yán)苛的反應(yīng)條件,并且區(qū)域選擇性很差,因此限制了它們?cè)诤铣蓮?fù)雜有機(jī)分子中的應(yīng)用。雖然,這一目標(biāo)的實(shí)現(xiàn)對(duì)研究人員來(lái)說(shuō)是一個(gè)巨大的挑戰(zhàn),但是,對(duì)于復(fù)雜的底物選擇性碳?xì)滏I官能團(tuán)化這一極具挑戰(zhàn)性的課題仍然引起了越來(lái)越多的合成研究人員的興趣。在這些轉(zhuǎn)化中,引入合適的導(dǎo)向基團(tuán)來(lái)增加反應(yīng)活性和區(qū)域選擇性是一個(gè)不錯(cuò)的選擇,通過(guò)利用導(dǎo)向基的電性或者配位能力,加之一些高效催化劑的參與,可以對(duì)特定的碳?xì)滏I進(jìn)行直接官能團(tuán)化的轉(zhuǎn)化,因此可以得到具有高度區(qū)域選擇性的產(chǎn)品,并且增加了反應(yīng)的活性。像這類容易修飾和移除的導(dǎo)向基,可以應(yīng)用在復(fù)雜分子的合成中。然而,芳基親電取代反應(yīng)作為一種傳統(tǒng)的合成策略,芳基化合物進(jìn)行官能團(tuán)化轉(zhuǎn)化通常需要嚴(yán)苛的反應(yīng)條件,并且區(qū)域選擇性非常...
【文章來(lái)源】:天津大學(xué)天津市 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:220 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
abstract
Chapter 1 C–C bond formation via C–H activation mediated by main group and transition metals
1.1 Introduction
1.2 Deprotonation by organolithium reagents and formation of new C–C bonds
1.2.1 Introduction of lithium reagents
1.2.2 Deprotonation by organolithium reagents on sp C and formation of new C–C bonds
1.2.3 Deprotonation by organolithium reagents on sp2 C and construction of new C–C bonds
1.2.4 Deprotonation by organolithium reagents on sp3 C and construction of new C–C bonds
1.3 Construction new C–C bonds through C–H activation with transition-metal catalysts in aromatic compounds
1.3.1 C–H arylation
1.3.2 C–H alkylation
1.3.3 C–H alkenylation
1.3.4 C–H acylation and carbonylation
Chapter 2 Review of aromatic heterocyclic compounds synthesis
2.1 Introduction
2.2 Aromatic heterocyclic compounds synthesis via transition-metal catalysts
2.2.1 Ruthenium-catalyzed formation of aromatic heterocyclic compounds
2.2.2 Iridium-catalyzed formation of aromatic heterocyclic compounds
2.2.3 Palladium-catalyzed formation of aromatic heterocyclic compounds
2.2.4 Aromatic heterocyclic compounds synthesis via other transition-metal catalysts
2.3 Aromatic heterocyclic compounds synthesis without transition-metal catalysts
2.3.1 Intermolecular coupling reactions without transition-metals
2.3.2 Intramolecular coupling reactions without transition-metals
2.4 Our study of external-ligand-free aerobic oxidation of N–and C–containing cyclic systems under Pd-catalyzed conditions
2.4.1 Introduction
2.4.2 Designing of project
2.4.3 The results of experiments and discussions
2.5 Conclusion of this chapter
Chapter 3 The aryl radical reaction mediated by KOt Bu
3.1 Introduction of radical reactions
3.2 Radical chain reactions:innate cycles from precursors to products
3.3 Inhibitors and side reactions:the stealth chain killers
3.4 Metals as catalysts
3.4.1 Titanium catalysis
3.4.2 Iron catalysis
3.4.3 Ruthenium catalysis
3.4.4 Cobalt catalysis
3.4.5 Palladium catalysis
3.5 Inorganic compounds as catalysts
3.5.1 Acid as catalysts in radical reactions
3.5.2 KOtBu as catalyst in radical reactions
3.6 Our study of building N-and C-containing cyclic systems under KOt Bu through radical reaction
3.6.1 Introduction
3.6.2 Designing of project
3.6.3 Screening reaction conditions
3.6.4 The expanding of substrates
3.6.5 Scale-up experiment
3.6.6 Mechanism study
3.6.7 Conclusion of this section
Chapter 4 Alkylation of aryl system with norbornene
4.1 Introduction of norbornene
4.2 Designing of project
4.3 Screening reaction conditions
4.4 Conclusion of this section
Chapter 5 Transition-metal catalyze C–H activation/annulation process
5.1 Introduction
5.2 Transition-metal catalyzed C–H activation process to construct five-membered heterocycle
5.2.1 Indole syntheses
5.2.2 Furan syntheses
5.2.3 Methods of synthesizing isoindolone derivatives mediated by metal catalysts
5.2.4 Methods of synthesizing phthalides mediated by transition metal catalysts
5.2.5 Methods of synthesizing indenone derivatives mediated by transition metal catalysts
5.3 Transition-metal catalyzed C–H activation process to construct six-member ring blocks
5.3.1 Synthesis of isocoumarins mediated by transition-metals
5.3.2 Synthesis of quinolones mediated by transition-metals
5.4 Our study of building annulation indenone structure under Pd-catalyzed conditions
5.4.1 Background
5.4.2 Designing of project
5.4.3 Process of making standard curves
5.4.4 Screen reaction conditions
5.4.5 Conclusion of this chapter
Chapter 6 Experimental parts and data
6.1 Instruments and materials
6.2 Compounds preparation of external ligand-free aerobic oxidation of N,C-containing cyclic systems under Pd-catalyzed conditions
6.2.1 Preparation of N-containing heterocycle starting materials
6.2.2 Preparation of N-containing heterocycle compounds under Pd-catalyzed conditions
6.2.3 Experimental data
6.3 Compounds preparation of N,C-containing cyclic systems mediated by KOt Bu
6.3.1 Preparation of N-containing heterocycle starting materials
6.3.2 Preparation of N-containing heterocycle compounds under KOt Bu conditions
6.3.3 Free radical capture experiment
6.3.4 Control experiment of deprotonation
6.4 Merry-go-round experiment
6.5 Preparation of oximes
6.6 Preparation of2,3-diphenyl-1H-inden-1-one
References
Appendix A part of1H NMR data about some compounds
Publication and participation in scientific research
Acknowledgement
本文編號(hào):2930093
【文章來(lái)源】:天津大學(xué)天津市 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:220 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
abstract
Chapter 1 C–C bond formation via C–H activation mediated by main group and transition metals
1.1 Introduction
1.2 Deprotonation by organolithium reagents and formation of new C–C bonds
1.2.1 Introduction of lithium reagents
1.2.2 Deprotonation by organolithium reagents on sp C and formation of new C–C bonds
1.2.3 Deprotonation by organolithium reagents on sp2 C and construction of new C–C bonds
1.2.4 Deprotonation by organolithium reagents on sp3 C and construction of new C–C bonds
1.3 Construction new C–C bonds through C–H activation with transition-metal catalysts in aromatic compounds
1.3.1 C–H arylation
1.3.2 C–H alkylation
1.3.3 C–H alkenylation
1.3.4 C–H acylation and carbonylation
Chapter 2 Review of aromatic heterocyclic compounds synthesis
2.1 Introduction
2.2 Aromatic heterocyclic compounds synthesis via transition-metal catalysts
2.2.1 Ruthenium-catalyzed formation of aromatic heterocyclic compounds
2.2.2 Iridium-catalyzed formation of aromatic heterocyclic compounds
2.2.3 Palladium-catalyzed formation of aromatic heterocyclic compounds
2.2.4 Aromatic heterocyclic compounds synthesis via other transition-metal catalysts
2.3 Aromatic heterocyclic compounds synthesis without transition-metal catalysts
2.3.1 Intermolecular coupling reactions without transition-metals
2.3.2 Intramolecular coupling reactions without transition-metals
2.4 Our study of external-ligand-free aerobic oxidation of N–and C–containing cyclic systems under Pd-catalyzed conditions
2.4.1 Introduction
2.4.2 Designing of project
2.4.3 The results of experiments and discussions
2.5 Conclusion of this chapter
Chapter 3 The aryl radical reaction mediated by KOt Bu
3.1 Introduction of radical reactions
3.2 Radical chain reactions:innate cycles from precursors to products
3.3 Inhibitors and side reactions:the stealth chain killers
3.4 Metals as catalysts
3.4.1 Titanium catalysis
3.4.2 Iron catalysis
3.4.3 Ruthenium catalysis
3.4.4 Cobalt catalysis
3.4.5 Palladium catalysis
3.5 Inorganic compounds as catalysts
3.5.1 Acid as catalysts in radical reactions
3.5.2 KOtBu as catalyst in radical reactions
3.6 Our study of building N-and C-containing cyclic systems under KOt Bu through radical reaction
3.6.1 Introduction
3.6.2 Designing of project
3.6.3 Screening reaction conditions
3.6.4 The expanding of substrates
3.6.5 Scale-up experiment
3.6.6 Mechanism study
3.6.7 Conclusion of this section
Chapter 4 Alkylation of aryl system with norbornene
4.1 Introduction of norbornene
4.2 Designing of project
4.3 Screening reaction conditions
4.4 Conclusion of this section
Chapter 5 Transition-metal catalyze C–H activation/annulation process
5.1 Introduction
5.2 Transition-metal catalyzed C–H activation process to construct five-membered heterocycle
5.2.1 Indole syntheses
5.2.2 Furan syntheses
5.2.3 Methods of synthesizing isoindolone derivatives mediated by metal catalysts
5.2.4 Methods of synthesizing phthalides mediated by transition metal catalysts
5.2.5 Methods of synthesizing indenone derivatives mediated by transition metal catalysts
5.3 Transition-metal catalyzed C–H activation process to construct six-member ring blocks
5.3.1 Synthesis of isocoumarins mediated by transition-metals
5.3.2 Synthesis of quinolones mediated by transition-metals
5.4 Our study of building annulation indenone structure under Pd-catalyzed conditions
5.4.1 Background
5.4.2 Designing of project
5.4.3 Process of making standard curves
5.4.4 Screen reaction conditions
5.4.5 Conclusion of this chapter
Chapter 6 Experimental parts and data
6.1 Instruments and materials
6.2 Compounds preparation of external ligand-free aerobic oxidation of N,C-containing cyclic systems under Pd-catalyzed conditions
6.2.1 Preparation of N-containing heterocycle starting materials
6.2.2 Preparation of N-containing heterocycle compounds under Pd-catalyzed conditions
6.2.3 Experimental data
6.3 Compounds preparation of N,C-containing cyclic systems mediated by KOt Bu
6.3.1 Preparation of N-containing heterocycle starting materials
6.3.2 Preparation of N-containing heterocycle compounds under KOt Bu conditions
6.3.3 Free radical capture experiment
6.3.4 Control experiment of deprotonation
6.4 Merry-go-round experiment
6.5 Preparation of oximes
6.6 Preparation of2,3-diphenyl-1H-inden-1-one
References
Appendix A part of1H NMR data about some compounds
Publication and participation in scientific research
Acknowledgement
本文編號(hào):2930093
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2930093.html
最近更新
教材專著