負載型Pd-M催化劑在氯代苯酚加氫脫氯中的研究
[Abstract]:With the rapid development of the chemical industry and the agriculture, the problem of water resource pollution is becoming more and more serious, in which the water environment is very harmful to a large class of substances, namely the chlorophenols organic compounds. They can directly or indirectly harm human health. The present catalytic reduction method has the advantages of economy, high efficiency, low energy consumption, no pollution and the like in the removal of chlorophenols in water, and is a technology which is well worth studying and exploring the removal of chlorophenol compounds in water. Pd-In/ Al-Al2O3, Pd-Cu/ AC bimetallic catalyst and Pd-In-Cu/ Al-Al2O3 three-metal catalyst with Pd loading of 1% and Pd-In-Cu/ Al-Al2O3 three-metal catalyst were prepared by step-by-step impregnation and co-impregnation. Pd and In are characterized by X-ray diffraction (XRD), scanning electron microscope-X-ray dispersion energy spectrum (SEM-EDS), high-resolution transmission electron microscope (HR-TEM), X-ray electron energy spectrum (XPS), program temperature-raising reduction (TPR), and H2 pulse chemical adsorption method. The crystal structure, surface morphology, particle shape and particle size, dispersity and surface area of Cu metal particles were characterized. The reaction was carried out in a glass reactor, an aqueous solution of p-chlorophenol and a catalyst were added, the reaction was carried out with H2, and the product was analyzed by gas chromatography. The preparation methods of different catalysts, the different Pd-M molar ratios and the effect of different catalyst carriers on the catalytic activity and selectivity were investigated. The results show that the Pd, In and Pd and Cu metal particles in the supported bimetallic catalyst and the copper-based bimetallic catalyst are mainly distributed on the surface of the carrier. In the Pd-In/ Al-Al2O3 catalyst, the particle size of the Pd particles is between 2nm and 5nm, and the catalytic activity of the series of catalysts is firstly increased with the increase of the molar ratio of the catalyst, mainly because the addition of an appropriate amount of In aid to the Pd single metal catalyst can improve the dispersity and the surface area of the metal catalyst, The dispersion and surface area of Pd in the IP-2 catalyst prepared by the preparation method are as high as 46.6% and 92.7m2g-1, while the dispersion and surface area of the catalyst in the monometallic catalyst are 23.7% and 529.9m2g-1, but with the increasing of In content, the conversion of p-chlorophenol is suppressed. in the Pd-Cu/ AC bimetallic catalyst, the particle size of the Pd particles is between 1nm and 6nm, and as the molar ratio of the copper is increased, the catalytic performance of the series of catalysts is also reduced, and the main reason is that the copper content in the copper-based bimetallic catalyst is changed, and when the copper content is low, the copper particles in the catalyst are dispersed between the nanoparticles, increasing its degree of dispersion and surface area, but as the copper content continues to increase, the copper particles begin to cover on the surface of the graphite particles or in combination with the graphite particles to form an alloy to reduce the activity of the catalyst as the copper content continues to increase. The dispersion and surface area of the CP-2 catalyst in the series of catalysts are respectively 47.6% and 106.2m2g-1, respectively, so the activity of the CP-2 catalyst is also proved to be the best, and the p-chlorophenol can be completely converted within 30 minutes. The catalytic activity of the series of catalysts is higher than that of the copper-based bimetallic catalyst supported on alumina, mainly because the surface area of the activated carbon is significantly higher than the surface area of the alumina (the surface area of the activated carbon is 704 m2 g-1, while the surface area of the alumina is 92.3m2 g-1), the catalyst with active carbon as the carrier shows a higher degree of dispersion than the catalyst supported by the alumina. because of the absence of a metal component in the activated carbon, when the activated carbon is used as the carrier, the interaction with the active center metal is relatively weak, and in contrast, the metal in the alumina may have a greater effect on the active carbon, Therefore, the catalyst with active carbon as the carrier shows higher catalytic activity. The CP-2 catalyst loaded with activated carbon can complete the conversion of the chlorophenol in half an hour, and under the same conditions, the CP-1-2 catalyst with the alumina as the carrier will need one hour for the conversion of the chlorophenol. in the removal of the p-chlorophenol in water, the molar ratio of the in/ Pd to the in/ Pd mole ratio of the alumina as the support is 0.1/ 1, the performance of the p-chlorophenol is optimized by the IP-2 catalyst prepared by the in-in Pd impregnation method, the Cu/ Pd molar ratio of the active carbon as a carrier is 0.3/ 1, The removal of p-chlorophenol with the CP-2 catalyst prepared by the pre-Cu-Pd impregnation method is the best. The above shows that the conversion of the chlorophenol is mainly related to the dispersion and specific surface of Pd, and the higher Pd dispersion can improve the catalytic activity of the catalyst. The results show that the catalytic activity of the three-metal-series catalyst is much lower than that of the bimetallic catalyst. The catalytic performance of the three-metal catalyst of the mixed-plus-iron-copper series is higher than the three-metal catalyst of the first copper-and-copper-copper series, and the copper-fired trimetal catalyst prepared by the impregnation sequence of the first copper and the second-metal catalyst is better than the three-metal catalyst of the first-step copper-fired copper-copper series.
【學(xué)位授予單位】:煙臺大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:O643.36
【相似文獻】
相關(guān)期刊論文 前10條
1 曾奕昌;劉豐烈;;鈷催化劑制造過程中矽酸鈷的生成及其影響[J];科學(xué)通報;1955年10期
2 ;催化劑性能測試(一)——催化劑強度測定儀[J];上海化工;1977年04期
3 楊可欽;;高鉬鎳和鉬鎳磷催化劑的催化性能對比[J];石油煉制與化工;1982年11期
4 厲杜生;我國硫酸生產(chǎn)用釩催化劑的早期研制工作[J];硫酸工業(yè);1984年02期
5 金榮達;;Z_(403H)型輕油轉(zhuǎn)化催化劑性能的研究[J];遼寧化工;1988年05期
6 錢水林;;國內(nèi)外變換催化劑的發(fā)展概況[J];小氮肥設(shè)計技術(shù);1989年04期
7 縱秋云,李欣,郭建學(xué),張新堂,蘇旭;鈦促進型耐硫變換催化劑的性能[J];應(yīng)用化學(xué);2001年08期
8 蔣文貞,張志祥,陳建設(shè);銀催化劑使用前后的微觀變化[J];石化技術(shù);2004年02期
9 趙羅生;;新型金屬載體消氫催化劑的研究[J];艦船科學(xué)技術(shù);2006年02期
10 趙志利;李建偉;陳標(biāo)華;;三氧化二鐵晶型對鐵鉻系高溫變換催化劑性能的影響[J];現(xiàn)代化工;2006年S2期
相關(guān)會議論文 前10條
1 辛勤;;粒子大小、微區(qū)結(jié)構(gòu)和組成對催化劑性能的影響[A];第七屆全國催化劑制備科學(xué)與技術(shù)研討會論文集[C];2009年
2 吳慧;樊金串;黃偉;謝克昌;;聚乙二醇對合成二甲醚漿狀催化劑性能的影響研究[A];第十三屆全國催化學(xué)術(shù)會議論文集[C];2006年
3 王麗麗;賈美林;照日格圖;郝向英;;以分子篩為載體的納米金催化劑的性能研究[A];第五屆全國環(huán)境催化與環(huán)境材料學(xué)術(shù)會議論文集[C];2007年
4 潘兆德;王宏悅;蔡亮;胡文培;劉坤;;高活性耐硫變換催化劑的研制[A];第六屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2009年
5 趙曉爭;高雄厚;張忠東;張莉;劉宏海;;不同類型稀土元素對原位晶化型催化劑性能的影響[A];甘肅省化學(xué)會第二十七屆年會暨第九屆甘肅省中學(xué)化學(xué)教學(xué)經(jīng)驗交流會論文摘要集[C];2011年
6 孫欣欣;林強;李金兵;;載體預(yù)處理工藝對乙烯氧化銀催化劑性能的影響[A];第九屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2012年
7 王紅巖;鄭起;于政錫;林性貽;;鉬助劑對乙炔法合成醋酸乙烯催化劑性能的影響[A];第十三屆全國催化學(xué)術(shù)會議論文集[C];2006年
8 曾利輝;高武;李岳鋒;丁良;姚琪;;3α-高托品烷胺合成用催化劑的研究[A];第十四屆全國青年催化學(xué)術(shù)會議會議論文集[C];2013年
9 黃文氫;張飛;張穎;張明森;;改性甲醇制低碳烯烴催化劑的表征[A];中國化工學(xué)會2008年石油化工學(xué)術(shù)年會暨北京化工研究院建院50周年學(xué)術(shù)報告會論文集[C];2008年
10 苗婷;朱海燕;;活性炭載體結(jié)構(gòu)及預(yù)處理對催化劑性能的影響[A];第十屆全國工業(yè)催化技術(shù)及應(yīng)用年會論文集[C];2013年
相關(guān)重要報紙文章 前10條
1 凌鋒;國產(chǎn)催化劑工業(yè)化應(yīng)用結(jié)新果[N];中國石化報;2005年
2 王永軍;多功能硫黃回收催化劑經(jīng)濟又環(huán)保[N];中國石化報;2009年
3 江書程 仇國賢 辛國萍;原位晶化型催化劑達國際先進水平[N];中國礦業(yè)報;2009年
4 通訊員 趙淑玲;吉林石化新型催化劑一次通過考核標(biāo)定[N];中國石油報;2009年
5 本報記者 曾敏學(xué);湖南建長:生產(chǎn)世界一流催化劑[N];岳陽晚報;2011年
6 本報記者 許琦敏;促使催化劑分子“單兵作戰(zhàn)”[N];文匯報;2012年
7 郝曉麗 朱向?qū)W 姚偉;大連化物所自主合成吡啶新型催化劑[N];科技日報;2009年
8 陶炎;乙二醇生產(chǎn)成本大降[N];中國石化報;2011年
9 通訊員 仇國賢;推廣新型催化劑增產(chǎn)乙烯上千噸[N];中國石油報;2011年
10 李曉巖;氣相法聚乙烯催化劑投用[N];中國化工報;2003年
相關(guān)博士學(xué)位論文 前10條
1 白翠華;含氮MOFs衍生復(fù)合材料的制備及其催化性能研究[D];華南理工大學(xué);2015年
2 劉子萱;聚吡咯修飾碳載鈷催化劑對氧還原催化作用的研究[D];浙江大學(xué);2013年
3 李加新;鋰離子/空氣電池碳基電極的設(shè)計、制備及性能研究[D];福建師范大學(xué);2015年
4 李彥朋;硫化鉬/碳及硫/碳復(fù)合電極材料性能與催化機理研究[D];哈爾濱工業(yè)大學(xué);2015年
5 梁虹;車用柴油機SCR系統(tǒng)催化箱溫度場特性研究[D];北京理工大學(xué);2015年
6 趙波;富鈰基鈰鋯復(fù)合氧化物材料的制備及其負載單Pd催化劑三效催化性能的研究[D];浙江大學(xué);2011年
7 李慶遠;磁性金屬—有機骨架催化劑的合成、結(jié)構(gòu)表征和催化性能研究[D];北京化工大學(xué);2014年
8 仇方圓;微納過渡金屬復(fù)合物的制備及其催化NH_3BH_3放氫性能研究[D];南開大學(xué);2014年
9 胡曉靜;TiO_2納米管基催化劑的制備、表征及催化性能研究[D];南開大學(xué);2014年
10 徐悅;基于第一性原理篩選甲烷重整反應(yīng)用金屬及合金催化劑[D];華東理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 劉璐;研磨等方法制備多壁碳納米管負載鈀基催化劑[D];河北師范大學(xué);2015年
2 趙博琪;聚合物改性Pt基催化劑對甲醇電催化氧化性能研究[D];沈陽理工大學(xué);2015年
3 朱振玉;堿性介質(zhì)中醇類電氧化Pd系催化劑的制備及性能研究[D];沈陽理工大學(xué);2015年
4 鐘成林;二氧化碳加氫合成甲醇Cu/TiO_2催化劑的研究[D];上海應(yīng)用技術(shù)學(xué)院;2015年
5 李黎;介孔CuO-ZnO-ZrO_2催化二氧化碳加氫合成甲醇[D];上海應(yīng)用技術(shù)學(xué)院;2015年
6 鄧博洋;超聲霧化分解法制備Mn/TiO_2系列低溫SCR催化劑研究[D];浙江工商大學(xué);2015年
7 王小星;SiO_2/g-C_3N_4和ZrO_2/g-C_3N_4催化劑光催化降解染料的研究[D];浙江師范大學(xué);2015年
8 黃建萍;pH響應(yīng)型界面活性SiO_2材料制備及催化劑性能研究[D];山西大學(xué);2015年
9 徐培培;貴金屬改性的NPG催化劑對甲醇甲酸催化氧化性能的研究[D];曲阜師范大學(xué);2015年
10 鹿國萍;金屬氧化物對Pt、Pd催化劑上醇類電氧化反應(yīng)的促進作用[D];曲阜師范大學(xué);2015年
,本文編號:2412428
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2412428.html