紅外光譜技術(shù)的三文魚肉假冒鑒別
[Abstract]:Domestic salmon market is mixed, counterfeit problem is serious, but the identification method is limited. Infrared spectroscopy combined with partial least squares discriminant analysis (PLS-DA) was used to study the impersonation of salmon from Heilongjiang, freshwater rainbow trout and Chilean Pacific salmon to Norwegian salmon. The original spectra of four kinds of meat were collected by FITR spectrometer and KBr compression method, and the original spectra were smoothed by multielement scattering correction (MSC), Savitzky-Golay, respectively. The first derivative (first derivative), standard canonical transformation (SNV), peak area normalization (peak area normalization) five pretreatments to eliminate noise and other interference factors and to determine the best pretreatment method. In order to establish the PLS-DA discriminant model, the spectra of four kinds of fish were assigned to four reference scores of -1 and 3, respectively, and the veracity of the model was tested by predicting the fish meat score. The results show that when the peak area normalization method is used, the PLS-DA detection model has the best effect, and the determination coefficients of the calibration set and the cross-validation set are 0.97 and 0.37 and 0.52 for 0.95.RMSEC and RMSECV, respectively. The model can distinguish four kinds of fish significantly, the prediction scores of the detection set are clustered around their respective reference points respectively, and the prediction accuracy is 96 when the threshold value is 鹵1. At the same time, the spectrum of four kinds of fish was analyzed by Markov distance method, and it was found that there were obvious differences among them, among which the distance between Norwegian salmon and freshwater rainbow trout, which had the biggest difference in species, was the largest. The distance of Chilean Pacific salmon is the smallest, and the infrared spectrum information can reflect the difference of species and living environment of different fish. Therefore, the use of infrared spectroscopy combined with PLS-DA method can accurately identify other fish to Norway salmon impersonation, and at the same time for other meat detection has certain reference significance.
【作者單位】: 華南農(nóng)業(yè)大學(xué)工程學(xué)院 教育部南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)重點(diǎn)實(shí)驗(yàn)室 廣東省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室;仲愷農(nóng)業(yè)工程學(xué)院信息科學(xué)與技術(shù)學(xué)院 廣東省食品安全與智能控制工程技術(shù)研究中心;
【基金】:國家自然科學(xué)基金青年項(xiàng)目(61501531) 廣東省自然科學(xué)基金項(xiàng)目(2015A030313602) 廣東省科技計(jì)劃項(xiàng)目(2015A020209173) 廣州市產(chǎn)學(xué)研協(xié)同創(chuàng)新重大專項(xiàng)(201508010013,201704020030)資助
【分類號(hào)】:O657.33;TS254.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李靜;李美超;莫衛(wèi)民;;顯微紅外光譜技術(shù)的發(fā)展及應(yīng)用[J];理化檢驗(yàn)(化學(xué)分冊(cè));2009年10期
2 鐘捷;;紅外光譜技術(shù)在氣體檢測(cè)分析中的應(yīng)用[J];化工管理;2013年18期
3 王緒明;;近三年紅外光譜技術(shù)的應(yīng)用與新進(jìn)展[J];光譜儀器與分析;1996年01期
4 袁鵬;崔蔓;莊一迪;蒙振章;陳建軍;;用紅外光譜技術(shù)研究打蠟梨的紅外光譜特性[J];紅外;2014年01期
5 姚煒;夏彩云;;紅外光譜技術(shù)在食品安全檢測(cè)中的應(yīng)用[J];中國衛(wèi)生檢驗(yàn)雜志;2009年06期
6 宋浩;;紅外光譜技術(shù)在汽油性質(zhì)測(cè)定中的應(yīng)用研究[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2013年09期
7 申柯婭;紅外光譜技術(shù)在翡翠鑒定中的應(yīng)用[J];光譜實(shí)驗(yàn)室;2000年03期
8 王平萍;辜琦蘄;劉婷婷;劉青;倪凱;;基于表面增強(qiáng)紅外光譜技術(shù)的大腸桿菌的快速檢測(cè)方法研究[J];科技致富向?qū)?2014年08期
9 劉敏娜,王桂清,盧其斌;紅外光譜技術(shù)的進(jìn)展及其應(yīng)用[J];精細(xì)化工中間體;2001年06期
10 姚冰潔;金韶華;陳樹森;史彥山;李麗潔;范洪毅;;在線紅外光譜技術(shù)研究烏洛托品與醋酸體系的反應(yīng)[J];兵工學(xué)報(bào);2013年02期
相關(guān)會(huì)議論文 前2條
1 陳昱;周群;孫素琴;;紅外光譜技術(shù)對(duì)清香型白酒的品質(zhì)分析[A];第十四屆全國分子光譜學(xué)術(shù)會(huì)議論文集[C];2006年
2 李璐;周群;孫素琴;;紅外光譜技術(shù)與巧克力的質(zhì)量評(píng)價(jià)[A];第十四屆全國分子光譜學(xué)術(shù)會(huì)議論文集[C];2006年
相關(guān)碩士學(xué)位論文 前2條
1 宋思遠(yuǎn);中紅外光譜技術(shù)對(duì)液態(tài)乳中摻入非蛋白氮物質(zhì)檢測(cè)的研究[D];河北科技大學(xué);2013年
2 溫國麗;紅外光譜技術(shù)用于食品分析及生物傳感的初步研究[D];湖南大學(xué);2011年
,本文編號(hào):2272611
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2272611.html