紫蘇種子品質(zhì)的近紅外光譜分析
發(fā)布時(shí)間:2018-10-05 20:51
【摘要】:為加快紫蘇優(yōu)質(zhì)育種進(jìn)程,采用近紅外光譜(NIRS)技術(shù),結(jié)合線性偏最小二乘法(PLS),以250份全國范圍內(nèi)收集的紫蘇資源為研究材料,分別較好的建立其種子中含油量,棕櫚酸(C16∶0),硬脂酸(C18∶0),油酸(C18∶1),亞油酸(C18∶2),a-亞麻酸(C18∶3)含量的六個(gè)近紅外光譜校正模型。結(jié)果顯示,六個(gè)模型的校正決定系數(shù)(RSQ1)分別為:0.98,0.91,0.92,0.92,0.85,0.93;交叉驗(yàn)證決定系數(shù)(1-VR)分別為:0.97,0.89,0.89,0.91,0.85和0.91;外部驗(yàn)證相關(guān)系數(shù)(RSQ)分別為:0.98,0.91,0.89,0.90,0.80和0.89,且定標(biāo)標(biāo)準(zhǔn)誤差(SEC)分別為0.99,0.21,0.1,0.94,0.81,0.92;交叉驗(yàn)證標(biāo)準(zhǔn)誤差(SECV)分別為1.16,0.23,0.11,1.05,0.92,1.02和預(yù)測標(biāo)準(zhǔn)誤差(SEP)分別為0.97,0.21,0.11,1.12,0.99,1.14。結(jié)果表明,此六個(gè)校正模型質(zhì)量均較高。這些首次建立的快速無損的近紅外分析模型,可為紫蘇資源開發(fā)提供指導(dǎo),對紫蘇油分品質(zhì)育種具有重要意義。
[Abstract]:In order to speed up the quality breeding process of perilla, the seed oil content was established by using near infrared spectroscopy (NIRS) technique and linear partial least square method (PLS),) with 250 perilla resources collected throughout the country. Six near infrared spectral correction models for the contents of palmitic acid (C 16: 0), stearic acid (C 18: 0), oleic acid (C 18: 1), linoleic acid (C 18: 2) and linoleic acid (C 18: 3). The results show that The calibration decision coefficients (RSQ1) of the six models were: 0.980.92 / 0.920.92 / 0.92 / 0.93, respectively; the cross-validation decision coefficients (1-VR) were 0.970.89 / 0.990.85 and 0.91respectively; the external verification correlation coefficients (RSQ) were 0.9880.910.890.900.80 and 0.89respectively, and the calibration standard error (SEC) was 0.99 / 0.21 / 0.94 / 0.84 / 0.92, respectively; and the cross validation standard error (SECV) was 0.992 / 0.91 / 0.94 / 0.92, respectively, and the correlation coefficient of external verification was 0.989 / 0.991 / 0.900.80 and 0.89 respectively, and the calibration standard error (SEC) was 0.99 / 0.21 / 0.94 / 0.94 / 0.92, respectively. The (SEP) of the prediction standard error is 0.97 ~ 0.21 / 0.111.120.99 / 1.14, respectively, and the (SEP) of the prediction standard error is 0.97 ~ (0.21) ~ (0.11) ~ (1.12) ~ (1.12) ~ (1) ~ (1.14) ~ (-1), respectively. The results show that the quality of the six calibration models is high. These fast and lossless near infrared analysis models can provide guidance for the development of perilla resources and have important significance for seed oil quality breeding.
【作者單位】: 貴州省油菜研究所;貴陽市花溪區(qū)農(nóng)業(yè)局;
【基金】:貴州省農(nóng)業(yè)科學(xué)院專項(xiàng)資金項(xiàng)目[黔科合農(nóng)科院專項(xiàng)(2011)017] 國家自然科學(xué)基金項(xiàng)目(31360067) 貴州省科技廳省農(nóng)科院聯(lián)合基金項(xiàng)目[黔科合LH字(2015)7062]資助
【分類號】:O657.33;S567.219
本文編號:2254831
[Abstract]:In order to speed up the quality breeding process of perilla, the seed oil content was established by using near infrared spectroscopy (NIRS) technique and linear partial least square method (PLS),) with 250 perilla resources collected throughout the country. Six near infrared spectral correction models for the contents of palmitic acid (C 16: 0), stearic acid (C 18: 0), oleic acid (C 18: 1), linoleic acid (C 18: 2) and linoleic acid (C 18: 3). The results show that The calibration decision coefficients (RSQ1) of the six models were: 0.980.92 / 0.920.92 / 0.92 / 0.93, respectively; the cross-validation decision coefficients (1-VR) were 0.970.89 / 0.990.85 and 0.91respectively; the external verification correlation coefficients (RSQ) were 0.9880.910.890.900.80 and 0.89respectively, and the calibration standard error (SEC) was 0.99 / 0.21 / 0.94 / 0.84 / 0.92, respectively; and the cross validation standard error (SECV) was 0.992 / 0.91 / 0.94 / 0.92, respectively, and the correlation coefficient of external verification was 0.989 / 0.991 / 0.900.80 and 0.89 respectively, and the calibration standard error (SEC) was 0.99 / 0.21 / 0.94 / 0.94 / 0.92, respectively. The (SEP) of the prediction standard error is 0.97 ~ 0.21 / 0.111.120.99 / 1.14, respectively, and the (SEP) of the prediction standard error is 0.97 ~ (0.21) ~ (0.11) ~ (1.12) ~ (1.12) ~ (1) ~ (1.14) ~ (-1), respectively. The results show that the quality of the six calibration models is high. These fast and lossless near infrared analysis models can provide guidance for the development of perilla resources and have important significance for seed oil quality breeding.
【作者單位】: 貴州省油菜研究所;貴陽市花溪區(qū)農(nóng)業(yè)局;
【基金】:貴州省農(nóng)業(yè)科學(xué)院專項(xiàng)資金項(xiàng)目[黔科合農(nóng)科院專項(xiàng)(2011)017] 國家自然科學(xué)基金項(xiàng)目(31360067) 貴州省科技廳省農(nóng)科院聯(lián)合基金項(xiàng)目[黔科合LH字(2015)7062]資助
【分類號】:O657.33;S567.219
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 楊紅;用紫外分光光度法測定皂蠟的含油量[J];石油化工高等學(xué)校學(xué)報(bào);1994年01期
2 劉烈煒;金屬表面微量含油量的電化學(xué)測量方法[J];材料保護(hù);1998年07期
3 李天錫,張承謙,薛瑞英,凌玉璞,劉詩侖;方便面含油量速測方法[J];北京師范學(xué)院學(xué)報(bào)(自然科學(xué)版);1991年04期
4 王竹云,楊翠玲;核磁共振(NMR)測量油菜籽含油量的應(yīng)用[J];西部糧油科技;2000年06期
5 陳鷹;朱麗娜;黃海星;;紅外測油法淺析及其在氣體含油量測定中的應(yīng)用[J];上海計(jì)量測試;2008年02期
6 陳瑛,姜玉梅,王海強(qiáng);毛細(xì)管氣相色譜測定紫蘇油中紫蘇醛的方法研究[J];江西科學(xué);1999年01期
,本文編號:2254831
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2254831.html
最近更新
教材專著