過氧亞硝酸鹽納米發(fā)光探針的構(gòu)建
[Abstract]:Active oxygen is common in nature and living organisms. It is a stealth killer that causes diseases and senescence in life bodies. In order to better understand the role of active oxygen in physiological and pathological processes, selective determination of reactive oxygen species is particularly important. In addition, its life is only 10 ms. in addition, and the reactive oxygen species may also be cascaded and the chemical behavior is complex. Therefore, the selective determination of active oxygen in the biological system is difficult. At present, the most rapid development is the fluorescence analysis method, mainly based on the change of fluorescence signal after the fluorophore oxidation reaction. It is difficult to recognize and react to a certain kind of reactive oxygen species when the oxidation of active oxygen is small. Compared with the fluorescence analysis method, the most significant advantage of the chemiluminescence analysis method is that the light source is not needed, thus the background interference can be avoided effectively. Based on the Chemiluminescence Behavior of the peroxisate system, a new type of chemical luminescence is developed. In this paper, the high selectivity and high sensitive determination of peroxy nitrite in living cells is achieved by static injection chemiluminescence analysis. In addition, a high stable fluorescent gold quantum dot for active oxygen is designed and synthesized, which is expected to solve the nano hair. The optical probe is easily destroyed by reactive oxygen oxidation and leads to the quenching of luminescence. The problem of sensitivity reduction is of guiding significance to the construction of a specific reactive oxygen luminescence probe. The main contents of this paper are as follows: (1) a new nano catalyst, montmorillonite, was developed to sensitize the ultra weak chemiluminescence of nitrite. The effect of Montmorillonite Nanoparticles on the chemiluminescence of peroxy nitrite system was investigated by mixing rice particles in water medium. The results showed that the montmorillonite nanoplates could significantly enhance the chemiluminescence of the peroxy nitrite system. The montmorillonite nanostructures were tested by transmission electron microscopy and atomic force microscopy. The morphology of the tablets was characterized, and the reaction intermediates and luminescent bodies were confirmed by the active oxygen capture agent, electron spin resonance and chemiluminescence spectrum. The mechanism of sensitizing chemiluminescence of montmorillonite nanoscale was speculated. Under alkaline conditions, the iron species in the montmorillonite nanostructure can catalyze the decomposition of hydrogen peroxide and produce hydroxyl free radicals. Based on the reaction of the peroxy nitrite to produce a single state oxygen, a strong chemiluminescence is produced when it returns to the three line state. (2) a chemiluminescence probe for selective determination of peroxy nitrite is constructed based on the Direct Chemiluminescence Behavior of the semiconductor quantum dots induced by reactive oxygen species. The solution produces both the oxidation free radical hydroxyl radical and the reductive free radical superoxide anion radical. The hydroxyl radical can have the ability to inject holes into the quantum dots, and the superoxide anion has the ability to inject electrons into the quantum dots. Finally, the chemiluminescence is produced by the electron transfer annihilation mechanism. In a series of reactive oxygen species, the superoxide anion can produce chemiluminescence. The probe is good selectivity for peroxy nitrite. The determination of peroxy nitrite with this probe is 0.46 ~ 46 mu M and the detection limit is 0.11 mu M (S/N=3). The practicability of the probe is examined by measuring the exogenous peroxy nitrite in living cells. The results are in agreement with the theoretical value. (3) based on the carbon point. A highly sensitive peroxy nitrite chemiluminescence probe was constructed by the surface state luminescence mechanism. The surface state luminescence of the carbon point was regulated by changing the proportion of citric acid and urea by microwave method. The surface functionalities of the carbon point were characterized by Fu Liye transform infrared spectroscopy and X- ray photoelectron spectroscopy. The study shows that the surface state luminescence of the carbon point is mainly derived from the C-O group on the surface. With the increase of C-O content, the chemiluminescence response of the peroxisome is gradually enhanced. The response mechanism of the carbon point to the peroxy nitrite is evaluated by cyclic voltammetry, and the peroxy nitrite is determined by the probe. The linear range of salt is 0.01 ~ 3 M and the detection limit is 5 nM (S/N=3). The probe shows good biocompatibility and low toxicity. It has been successfully applied to the determination of exogenous and endogenous peroxises in living cells. The use of the chemiluminescence probe for the determination of peroxy nitrite in living cells is simple, selective and highly sensitive. (4) a stable red fluorescent quantum dot was designed and synthesized by changing the structure of the surface ligand, and used as a fluorescent marker for high active oxygen and long time cell labeling imaging. The blue fluorescent gold quantum dots with the ligand of bovine serum protein were coupled with the red fluorescent quantum dot of the two hydrogen sulfide octanoic acid as the ligand of the two imide coupling. Together, the new gold quantum dots are formed. On the one hand, the red fluorescence of the gold quantum dots is enhanced by the fluorescence resonance energy transfer. On the other hand, the covalent connection between the bovine serum protein and the two hydrogen lipoic acid effectively reduces the spiral structure in the bovine serum protein molecules and forms a stable protective layer on the surface of the gold nucleus, allowing the gold quantum to be made. This strategy can be used to regulate the oxidation resistance of gold quantum dots to construct stable and specific ROS luminescent probes.
【學位授予單位】:北京化工大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:O657.3
【相似文獻】
相關(guān)期刊論文 前10條
1 楊莉芹;過氧亞硝酸鹽介導(dǎo)的氧化應(yīng)激在神經(jīng)變性疾病發(fā)病機制中的認識[J];中國臨床神經(jīng)科學;2002年02期
2 呂超,魏彥林,林金明;過氧亞硝酸鹽的化學特性與化學發(fā)光反應(yīng)[J];世界科技研究與發(fā)展;2004年04期
3 劉瑞春;魯志煒;吳廣星;;黃芪對過氧亞硝酸鹽陰離子導(dǎo)致的血管反應(yīng)性異常的保護作用[J];中國臨床研究;2010年09期
4 陳愉,金惠銘;過氧亞硝酸鹽在內(nèi)皮細胞損傷中的作用[J];中國病理生理雜志;2000年05期
5 王宇朋;王萍;李敏;陳海平;王翠英;李虹偉;;外源性過氧亞硝酸鹽對大鼠血管收縮功能的影響的研究[J];臨床和實驗醫(yī)學雜志;2013年09期
6 王一偉;張新欣;薛芒;董曉麗;;碳量子點/硅酸鉍納米片復(fù)合光催化劑的構(gòu)建及其光催化性能增強[J];大連工業(yè)大學學報;2018年03期
7 杜君俐;;化學發(fā)光光源及其應(yīng)用[J];甘肅化工;1994年01期
8 張敏;;化學發(fā)光法在兒童生長激素缺乏癥診斷中的應(yīng)用[J];臨床醫(yī)藥文獻電子雜志;2016年43期
9 何英愛;姚葉林;劉見歡;何雪環(huán);朱彩嫦;葉淑貞;;化學發(fā)光法定量檢測術(shù)前四項傳染性標志物的結(jié)果分析[J];中國醫(yī)學創(chuàng)新;2017年21期
10 包杰;;用化學發(fā)光法和甲苯胺紅不加熱血清試驗法診斷梅毒的準確性對比[J];當代醫(yī)藥論叢;2015年13期
相關(guān)會議論文 前10條
1 權(quán)琳;田玨;燕子;張?zhí)K麗;王可;劉慧榮;;衰老大鼠血管內(nèi)皮舒張功能下降與iNOS升高的關(guān)系[A];中國病理生理學會第九屆全國代表大會及學術(shù)會議論文摘要[C];2010年
2 滕旭;王志華;呂超;;陰離子表面活性劑插層水滑石-過氧亞硝酸鹽化學發(fā)光新體系在分析中的應(yīng)用研究[A];中國化學會第28屆學術(shù)年會第9分會場摘要集[C];2012年
3 林金明;;化學發(fā)光柱后檢測技術(shù)及其應(yīng)用[A];第八屆全國發(fā)光分析暨動力學分析學術(shù)研討會論文集[C];2005年
4 韓鶴友;;化學發(fā)光振蕩及其分析化學中的應(yīng)用[A];第八屆全國發(fā)光分析暨動力學分析學術(shù)研討會論文集[C];2005年
5 張鑫智;;化學發(fā)光免疫定量應(yīng)用及存在問題[A];第九屆西北五省(區(qū))檢驗醫(yī)學學術(shù)會議論文匯編[C];2005年
6 劉平;;全自動化學發(fā)光熒光分析儀在獸藥殘留檢測中的應(yīng)用[A];2013現(xiàn)場檢測儀器及技術(shù)研討會大會報告及論文[C];2013年
7 趙云莎;黃均明;劉榮軍;趙書林;;基于化學發(fā)光共振能量轉(zhuǎn)移的毛細管電泳化學發(fā)光法同時測定5-羥色胺和5-羥基吲哚乙酸[A];全國生物醫(yī)藥色譜學術(shù)交流會(2010景德鎮(zhèn))論文集[C];2010年
8 劉清慧;呂九如;;雙嘧達莫的分子印跡-后化學發(fā)光研究[A];第八屆全國發(fā)光分析暨動力學分析學術(shù)研討會論文集[C];2005年
9 周鑫;潘義;;微痕量硫化氫氣體的硫化學發(fā)光氣相色譜法研究[A];全國氣體標準化技術(shù)委員會、全國半導(dǎo)體設(shè)備和材料標準化技術(shù)委員會氣體分會、全國標準樣品技術(shù)委員會氣體標樣工作組四屆五次會議、全國氣體標準化技術(shù)委員會分析分會一屆五次聯(lián)合會議論文集[C];2014年
10 李莉;盧昌咸;;高良姜素化學發(fā)光新體系的發(fā)光動力學性質(zhì)研究[A];甘肅省化學會二十六屆年會暨第八屆中學化學教學經(jīng)驗交流會論文集[C];2009年
相關(guān)重要報紙文章 前10條
1 本報記者 王天鵝;化學發(fā)光:進口替代勢不可擋[N];健康報;2017年
2 歐陽應(yīng);我國化學發(fā)光診斷試劑研究取得進展[N];醫(yī)藥導(dǎo)報;2004年
3 本報研究員 張獻;化學發(fā)光體外診斷業(yè)步入高速發(fā)展期[N];上海證券報;2015年
4 記者 劉霞;科學家利用超薄沸石納米片造出高效催化劑[N];科技日報;2012年
5 記者 曲照貴;天大首創(chuàng)零污染量子點合成工藝[N];中國化工報;2013年
6 記者 金朝力;量子點電視中國市場翻倍增長[N];北京商報;2017年
7 本報記者 崔爽;從量子點到量子環(huán) 改變的不只一個字[N];科技日報;2018年
8 本報記者 閔杰;再現(xiàn)“小陽春” 量子點電視好時光還有多少年?[N];中國電子報;2018年
9 李鋒白;2018年量子點電視銷售額預(yù)計突破110億[N];中國工業(yè)報;2018年
10 本報記者 丁瑩;產(chǎn)品升級技術(shù)煥新[N];中國質(zhì)量報;2018年
相關(guān)博士學位論文 前10條
1 周文娟;過氧亞硝酸鹽納米發(fā)光探針的構(gòu)建[D];北京化工大學;2017年
2 劉聞聞;過氧亞硝酸鹽對耳蝸螺旋神經(jīng)節(jié)細胞的損傷作用及機制研究[D];山東大學;2014年
3 申金山;基于人工神經(jīng)網(wǎng)絡(luò)的化學發(fā)光法及光度法在多組分同時測定中的應(yīng)用研究[D];四川大學;2005年
4 韓素琴;化學發(fā)光及其與毛細管電泳聯(lián)用技術(shù)的應(yīng)用研究[D];西北大學;2005年
5 梁耀東;化學發(fā)光新體系、電化學發(fā)光新方法的研究及應(yīng)用[D];西北大學;2006年
6 劉海燕;流動注射—化學發(fā)光法在藥物分析及農(nóng)藥殘留分析中的應(yīng)用研究[D];華東師范大學;2006年
7 曹偉;藥物和生物大分子的化學發(fā)光法研究[D];山東大學;2007年
8 姚寒春;化學發(fā)光及相關(guān)化學計量學方法的應(yīng)用研究[D];西北大學;2007年
9 劉偉;化學發(fā)光微流動注射分析芯片的研究[D];西南大學;2007年
10 何藝樺;基于CCD的小型光譜分析儀器與化學發(fā)光新技術(shù)[D];四川大學;2007年
相關(guān)碩士學位論文 前10條
1 范哲妍;氧化石墨烯與石墨烯量子點在化學發(fā)光中的應(yīng)用研究[D];山西師范大學;2017年
2 祝振童;新型低維碳材料的合成及其光學性質(zhì)研究[D];蘭州大學;2015年
3 葉夢陽;釩酸鹽量子點/g-C_3N_4納米片零維/二維異質(zhì)結(jié)光催化材料的合成與催化機理研究[D];天津大學;2017年
4 李顯明;均相酶促化學發(fā)光傳感檢測miRNA及氧化酶底物[D];成都理工大學;2017年
5 崔貝;硅量子點制備及化學發(fā)光基礎(chǔ)研究[D];陜西師范大學;2014年
6 彭汝林;基于能量轉(zhuǎn)移的化學發(fā)光信號放大分析體系構(gòu)建及檢測研究[D];湘潭大學;2017年
7 王秋瑾;熒光銀納米團簇在化學發(fā)光中的研究及應(yīng)用[D];青島科技大學;2011年
8 劉靜;氟喹諾酮類抗生素化學發(fā)光多樣性的研究[D];南昌大學;2018年
9 梁培培;硝基呋喃類代謝物的磁微粒化學發(fā)光快速檢測技術(shù)研究[D];華中科技大學;2016年
10 王婷;Ce(Ⅳ)-羅丹明6G體系及碳點在化學發(fā)光分析中的應(yīng)用[D];河北大學;2017年
,本文編號:2167345
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2167345.html