負載型釕取代多酸催化劑的設計合成及其在十四烷氧化中的應用
[Abstract]:Polyacid is a kind of nano sized inorganic cluster compound. Because of its acidity and oxidation-reduction, it can be used as a highly efficient dual function catalyst. At the same time, it has the characteristics of wide size, adjustable structure, rich composition and so on. It has good adaptability to different types of catalytic reactions. According to incomplete statistics, polyacid is in the field of catalysis. The results of application research occupy more than eighty percent of all the research fields. It can be seen that polyacid is a kind of valuable and promising catalyst for the previous study of polyacid in the field of homogeneous catalysis. However, with the continuous deepening of the research, some of the more difficult shortcomings, such as poor dispersibility and small specific surface area, are difficult to return. To some extent, these shortcomings restrict the development of the application of polyacid in the field of catalysis. At the same time, it is contrary to the idea of current green chemistry. In order to find a solution, scientists have done more attempts and explorations. The most effective is to load polyacid onto a suitable carrier to prepare heterogeneous catalyst. The high dispersion, high specific surface area and easy recovery of the support carrier overcome the disadvantages and promote the realization of the polyacid green catalytic process. With this idea, we choose several ruthenium to replace polyacid, and use the method of impregnation to produce a loaded polyacid catalyzing agent on different carriers, and use it for the catalytic oxidation experiment of fourteen alkanes. In accordance with the concept of green catalysis, the experimental process uses high pure air as the oxygen source, and does not use strong oxidants and other solvents, trying to promote the reaction under more mild conditions, focusing on the effects of different carrier structures and their different reaction conditions on the catalytic reaction. The following three aspects are carried out in the body: 1. first synthesis of containing compounds Tetravalent Ru Rb_ (10) [{Ru_4O_4 (OH) _2 (H_2O) _4} (H_2O) _4} (10) O_ (36)) _2] 21H_2O (GeW_ (10) Ru_2) and its loaded onto different carriers to prepare polyphase catalysts. It was modified by amino functionalization at the first stage, then the synthesized ruthenium was substituted for polyacid GeW_ (10) Ru_2 to be loaded to the molecular sieve to prepare the supported polyacid catalyst SBA-15-Apts-GeW_ (10) Ru_2 by impregnation method, and the feasibility of the preparation was proved by a variety of characterization methods. And then three kinds of silica molecules with different structures were selected. A catalyst X-Apts-NH_4-2 (X=SBA-15, KIT-6, FDU-12) was prepared by aminated modification of SBA-15, KIT-6 and FDU-12 as a catalyst carrier, and then the loading of polyacid on different structural carriers in the preparation process was investigated by a variety of characterization methods, and the.2. supported catalyst SB was deeply discussed. A-15-Apts-GeW_ (10) Ru_2 was used to investigate the catalytic oxidation of fourteen alkanes. On one hand, the effects of the amount of catalyst load, reaction time, reaction temperature, and the amount of catalyst on the catalytic efficiency of the catalyst were investigated. The optimum experimental conditions for the catalytic reaction were found to be 3.21% of the catalyst load, the reaction time 7 h, and the reaction temperature. At 150 degrees C, the amount of catalyst is 4 mg, and the conversion of fourteen alkanes can reach 50.97% under this condition. On the other hand, a series of controlled experiments have been made to deduce that the mechanism of the catalytic oxidation of fourteen alkanes is the free radical initiation process of the supported catalyst X-Apts-NH_4-2 (X=SBA-15, KIT-6, FDU-12) with different carriers (X=SBA-15, KIT-6, FDU-12) used in the catalytic oxygen of fourteen alkanes. On the one hand, the effect of different carriers on the catalytic activity of the catalyst was investigated, and the catalyst carrier, which was more suitable for the reaction system, was selected in the three of the three, and on the other hand, the catalytic activity of the solid phase catalyst FDU-12-Apts-NH_4-2 under different experimental conditions was studied, and the catalytic activity was investigated. The effect of the amount of agent load, reaction time, reaction temperature, and the amount of catalyst on the catalytic activity of the catalyst has been determined. The best experimental conditions for the catalytic reaction are the catalyst load 2.55%, the reaction temperature 150, the reaction time 7 h and the catalyst amount 4 mg, and the conversion of the positive fourteen alkane has reached 52.84%. under this condition.
【學位授予單位】:吉林大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O643.36
【相似文獻】
相關期刊論文 前10條
1 趙玉寶,李偉,張明慧,陶克毅;負載型純單斜相態(tài)納米氧化鋯的制備[J];燃料化學學報;2001年S1期
2 韓忠霄;殷蓉;李景印;王德松;;聚苯胺改性負載型納米二氧化鈦的研究[J];無機鹽工業(yè);2007年12期
3 楊洪麗;李為民;姚建;;鈣基負載型固體堿催化酯交換反應活性評價[J];燃料化學學報;2008年02期
4 韓俊杰;;負載型金屬氧化物催化劑的分子設計[J];化學工程師;1993年02期
5 董文庚,郎志敏,陳學誠;一種負載型重金屬離子富集劑的制備及初步應用[J];河北輕化工學院學報;1997年04期
6 林凱;辛嘉英;陳丹丹;張?zhí)m軒;王艷;夏春谷;;負載型納米金催化葡萄糖氧化研究進展[J];分子催化;2014年01期
7 李峰,許可,李蕾,王作新,段雪;硅膠負載型硫酸鋯表面相結構的理論研究[J];化學學報;2000年02期
8 黃寶琛;賀繼東;徐玲;周健松;蔡明;唐學明;;負載型鈦系催化劑合成高反1,4—聚異戊二烯的研究[J];青島化工學院學報;1990年04期
9 賀繼東,王娟;負載型鈦催化劑催化異戊二烯溶液聚合動力學[J];青島大學學報(工程技術版);2000年03期
10 李小紅;鄭旭煦;侯苛山;;負載型二氧化鈦光催化劑的研究進展[J];重慶工商大學學報(自然科學版);2009年02期
相關會議論文 前10條
1 梁長海;;金屬有機化學氣相沉積選控制備負載型催化新材料[A];第七屆全國催化劑制備科學與技術研討會論文集[C];2009年
2 辛秀蘭;洪珊;徐寶財;祝鈞;;負載型納米磷鉬雜多酸鹽制備研究[A];第十三屆全國催化學術會議論文集[C];2006年
3 康衛(wèi)民;付文麗;李全祥;程博聞;;纖維負載型催化材料研究進展[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
4 董林;陳懿;;負載型金屬氧化物催化劑表面相互作用研究[A];第十三屆全國催化學術會議論文集[C];2006年
5 郭瑜;賈春江;司銳;;負載型膠體金顆粒催化材料用于低溫催化一氧化碳氧化[A];中國化學會第29屆學術年會摘要集——第06分會:稀土材料化學及應用[C];2014年
6 底蘭波;徐志堅;亓濱;王凱;張麗娟;張秀玲;;大氣壓介質(zhì)阻擋放電還原負載型金屬離子的機理研究[A];第十六屆全國等離子體科學技術會議暨第一屆全國等離子體醫(yī)學研討會會議摘要集[C];2013年
7 李洪芳;羅孟飛;魯繼青;;負載型金催化劑上甲醛低溫氧化[A];第六屆全國環(huán)境催化與環(huán)境材料學術會議論文集[C];2009年
8 安立敦;齊世學;鄒旭華;索掌懷;;催化性能穩(wěn)定的負載型納米金催化劑[A];中國化學會第二十五屆學術年會論文摘要集(下冊)[C];2006年
9 羅文豪;王小慧;張明慧;李偉;陶克毅;;負載型鉬的碳氮夾雜化合物制備及其加氫脫硫性能研究[A];中國化學會第26屆學術年會應用化學分會場論文集[C];2008年
10 田然;王甫村;孫發(fā)民;朱金玲;呂倩;;負載型加氫催化劑金屬組分在載體上的分布狀態(tài)[A];第五屆全國工業(yè)催化技術與應用年會論文集(上冊)[C];2008年
相關博士學位論文 前8條
1 熊君;硅基負載型離子液體催化氧化燃油脫硫的研究[D];江蘇大學;2015年
2 陳加利;高分散負載型鈀基金屬催化劑的制備、表征及其催化加氫性能研究[D];北京化工大學;2014年
3 吳海強;負載型點擊聚合催化劑的探索[D];浙江大學;2016年
4 周硼;硫酸衍生固體酸—負載型硫酸及其鹽和磺酸樹脂催化性能的研究[D];大連理工大學;2003年
5 王佳;層狀前驅(qū)體制備高分散負載型納米鎳基催化劑及其性能的研究[D];北京化工大學;2012年
6 鄭維時;基于酚醛樹脂微球為模板的負載型貴金屬催化劑的制備及性質(zhì)研究[D];吉林大學;2015年
7 辛俊娜;高分散負載型納米Pd基加氫催化劑的研究[D];大連理工大學;2008年
8 李凝;負載型納米ZrO_2/Al_2O_3復合載體及Ni基催化劑的研究[D];南昌大學;2006年
相關碩士學位論文 前10條
1 陳忱;負載手性金屬銠和銥催化劑的制備及其催化性能研究[D];上海師范大學;2015年
2 李志雄;負載型銅基催化劑CO_2加氫合成甲醇性能研究[D];昆明理工大學;2015年
3 虞加歡;負載型納米鈀催化劑的制備及其在Suzuki交叉偶聯(lián)中的應用[D];上海應用技術學院;2015年
4 何莎;光沉積和錨定法制備負載型金屬催化劑材料及其催化性能研究[D];北京化工大學;2015年
5 韓瑞瑞;載體和助活性組分對負載型Pt基納米金屬催化劑結構與催化加氮性能的影響研究[D];北京化工大學;2015年
6 趙威;負載型鈣鈦礦催化氧化NO性能及其抗硫機理研究[D];湘潭大學;2015年
7 尚會姍;負載型Pt基納米復合催化劑的制備及其對4-硝基苯酚加氫的研究[D];鄭州大學;2016年
8 羅啟文;固相法制備負載型酚類防老劑及其在丁苯橡膠中的應用研究[D];華南理工大學;2016年
9 趙琛;磁性負載型超強酸催化的錫林浩特褐煤的加氫裂解[D];中國礦業(yè)大學;2016年
10 張棟棟;負載型鐵催化的興和褐煤的加氫轉化[D];中國礦業(yè)大學;2016年
,本文編號:2134106
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2134106.html