電聚合制備聚苯胺@石墨氈復(fù)合電極及其在電芬頓過程中的高效電催化性能(英文)
[Abstract]:As a advanced oxidation technology (AOPs), Fenton oxidation (Fenton) has attracted much attention because of its simple operation and green efficiency. The basic principle is that Fe~ (2+) catalyzes the hydroxyl radical (. OH) attack of organic matter produced by Fe~ (2+) to degrade it into inorganic small molecules or salts. The electric Fenton method (Electro-Fenton, E-Fenton) is in situ formation by electrochemical method. The advantage of H_2O_2's Fenton derivation is that it does not need to add H_2O_2 from the outside world, it is efficient, energy saving, no selectivity, and is easy to be coupled with other processing techniques. It is a new water treatment technology with great value and application prospect. Theory and process optimization of electric Fenton Technology are the theoretical and practical research of advanced oxidation technology. The key step of the.E-Fenton process is that the oxygen reduction reaction on the cathode material (Oxygen reduction reaction, ORR) continues to produce H_2O_2. because of high hydrogen evolution overpotential, good stability and excellent performance. Carbon materials become the most commonly used electrocatalytic cathode materials for ORR reaction. As a three-dimensional porous solid material, graphite felt has electrochemistry. With the advantages of large active area, good mass transfer, strong conductivity and low price, it is an ideal cathode material for ORR. Polyaniline material is a kind of conductive polymer material, which is cheap, good processing and rich in N atoms. It is very active in the field of basic research and practical application. We have synthesized polyaniline by electropolymerization. The electrocatalytic properties of the @ graphite felt (PANI@GF) composite electrode were studied by degradation of two methyl phthalate (dimethyl phthalate, DMP). The surface structure of the electrode and the doping of the heteroatom were characterized by the scanning electron microscopy (SEM) and the X ray photoelectron spectroscopy analysis. The results showed that the PANI@GF composite electrode was at the same time. The porous structure with macroscopic and microscopic structure, the porous structure of this fluffy structure provides the appropriate transfer channel and sufficient reaction area for oxygen. The N atom content in the prepared composite electrode is about 1.9%, and the content of pyridine N and pyrrole N is relatively high. These N atoms are derived from a large number of N atoms in the polyaniline molecules and can be promoted. The ORR reaction. The structure and composition of two materials of graphite felt and polyaniline made the PANI@GF composite electrode have excellent electrical Fenton degradation of DMP. Under the condition of DMP concentration of 50 mg/L, potential 0.5 V (vs.SCE), and oxygen flow rate of 0.4 L/min, the reverse apparent kinetic constant of DMP degradation is 0.0753 min-1, and it is the graphite felt electricity. The optimal polymerization time and carbonization temperature of the 5 times.PANI@GF composite electrode of the polar kinetic constant (0.0151 min-1) are 1 h and 900 C., respectively, because the polymerization time is too long, which may lead to the large thickness of the polyaniline layer and the microporous structure being blocked, thus reducing the reactive area and affecting the mass transfer effect of oxygen, making the electrode performance under performance. When the polymerization time is too short, it may lead to the insufficient composite of the electrode. High temperature carbonization can make the polyaniline layer on the surface of the graphite felt more pore structure, which is beneficial to the oxygen flow velocity in the process of ORR.DMP degradation, the amount of Fe~ (2+) and the p H value have a certain influence on the electrode property. The results show the corresponding optimum value. When oxygen flow is too low for 0.4 L/min, 1 mmol/L, and 3.0., the low concentration of dissolved oxygen in the solution limits the ORR process by the mass transfer process, causing the electrode to not fully react; when the oxygen flow is too high, it does not increase the oxygen concentration in the saturated solution, and the excessive oxygen rate will impact the electrode surface and reduce the electrode surface. For Fe~ (2+). For the dosage of Fe~ (2+), there are many Fe cycles in the process, and the different iron content has no obvious influence on the performance of the electrode. Therefore, the content of 1 mmol/L is sufficient to satisfy the experimental needs of the.P H value for the E-Fenton process, and when p H is higher, the iron ions will form a complex, hindering the iron cycle, and And it will lead to the decomposition of H_2O_2 and reduce the degradation performance of the electrode DMP, and when the P H is too low, more acid increases the cost, and the subsequent treatment process is needed to eliminate the effect of acid. The experimental results show that 3 is the best p H value, and the.PANI@GF composite electrode of the most suitable P H of the traditional Fenton method has the ability to catalyze the degradation of DMP, and in the finen. It has potential applications in the treatment of organic wastewater.
【作者單位】: 廣東省低碳化學(xué)與過程節(jié)能重點實驗室中山大學(xué)材料科學(xué)與工程學(xué)院;中山大學(xué)化學(xué)工程與技術(shù)學(xué)院;
【基金】:supported by the Sino-Greek Science and Technology Cooperation Project (2013DFG62590) the National Natural Science Foundation of China (21575299, 21576300, 21276290) Guangdong Province Nature Science Foundation (2014A030313150) Guangzhou Science and Technology Plan Project (201607010104)~~
【分類號】:O646.54;O643.3
【相似文獻】
相關(guān)期刊論文 前10條
1 周蕾;周明華;;電芬頓技術(shù)的研究進展[J];水處理技術(shù);2013年10期
2 TRABELSI SOUISSI Souhaila;OTURAN Nihal;BELLAKHAL Nizar;OTURAN Mehmet A;;應(yīng)用于水溶液介質(zhì)中喹啉氧化的電芬頓工藝實驗設(shè)計方法(英文)[J];電化學(xué);2013年05期
3 趙昌爽;張建昆;;芬頓氧化技術(shù)在廢水處理中的進展研究[J];環(huán)境科學(xué)與管理;2014年05期
4 趙豫北;;電芬頓在廢水處理方面的發(fā)展現(xiàn)狀和研究[J];科技傳播;2013年12期
5 李筱;初本莉;陳修棟;何宏平;;稀土輔助類芬頓效應(yīng)降解染料廢水[J];廣東化工;2011年09期
6 翁寶;;美國網(wǎng)友對中國霧靄的13種反應(yīng)[J];當代社科視野;2014年01期
7 張瑛潔;馬軍;姚軍;趙吉;陳雷;張亮;;可見光多相類芬頓降解水中孔雀石綠[J];哈爾濱工業(yè)大學(xué)學(xué)報;2010年04期
8 孟凡義;;芬頓氧化處理顯影脫膜廢液的研究[J];印制電路信息;2011年S1期
9 馬家海;楊維英;李向軍;;對二巰基苯促進的孔雀綠的芬頓降解(英文)[J];中國科學(xué)院研究生院學(xué)報;2012年02期
10 蘇榮軍;王鵬;谷芳;黃麗坤;;絮凝-芬頓氧化法處理制藥污水的研究[J];哈爾濱商業(yè)大學(xué)學(xué)報(自然科學(xué)版);2009年03期
相關(guān)會議論文 前6條
1 張曉飛;楊春鵬;王毅霖;;芬頓氧化技術(shù)處理醇酮模擬水的研究[A];2011中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第一卷)[C];2011年
2 王宇晶;趙紅穎;趙國華;;微波原位增強電芬頓氧化降解偶氮染料廢水的研究[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
3 李海濤;李玉平;曹宏斌;李鑫鋼;;隔膜體系中陽極氧化、陰極電芬頓耦合處理焦化廢水的研究[A];中國環(huán)境科學(xué)學(xué)會2009年學(xué)術(shù)年會論文集(第二卷)[C];2009年
4 萬云洋;劉靜;師生寶;朱雷;鐘寧寧;;基于污染分級的土壤石油超聲芬頓處理[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第20分會:環(huán)境與健康[C];2014年
5 王愛民;胡春;;活性炭纖維載鐵催化劑光芬頓降解偶氮染料酸性紅B[A];中國化學(xué)會第八屆水處理化學(xué)大會暨學(xué)術(shù)研討會論文集[C];2006年
6 胡紹偉;陳鵬;王永;徐偉;王飛;;芬頓氧化處理焦化廢水試驗研究[A];第七屆全國能源與熱工學(xué)術(shù)年會論文集[C];2013年
相關(guān)重要報紙文章 前10條
1 唐昀;“新媒體燒錢不賺錢”,或不再是魔咒[N];新華每日電訊;2010年
2 唐昀;阿里安娜·赫芬頓:打破“新媒體不賺錢”魔咒[N];經(jīng)濟參考報;2010年
3 孫行之;夢境在別處[N];第一財經(jīng)日報;2011年
4 鄧喻靜;《赫芬頓郵報》:沒有圍墻的新聞花園[N];中國經(jīng)營報;2013年
5 呂虹 編譯;《赫芬頓郵報》:美國夢正在發(fā)生變化[N];社會科學(xué)報;2013年
6 呂虹 編譯;《赫芬頓郵報》:東北亞會出現(xiàn)中韓與朝日對立嗎[N];社會科學(xué)報;2014年
7 袁超 編譯;《赫芬頓郵報》:歐洲最大的“敵人”是自己[N];社會科學(xué)報;2013年
8 郭全中;第一份互聯(lián)網(wǎng)報紙如何打造[N];中國新聞出版報;2013年
9 孫西輝 編譯;《赫芬頓郵報》:德國需以合作方式走向國際舞臺[N];社會科學(xué)報;2014年
10 本報記者 于洋;手機時代,誰還閱讀黑格爾?[N];人民日報;2012年
相關(guān)博士學(xué)位論文 前4條
1 李興發(fā);新型鐵基雙金屬類芬頓催化劑的研制及在染料去除上的應(yīng)用[D];浙江大學(xué);2015年
2 劉婷;非均相光芬頓體系的建立與內(nèi)循環(huán)流化床反應(yīng)器的研究[D];哈爾濱工業(yè)大學(xué);2009年
3 馮斐;Fenton氧化耦合MBR工藝處理蒽醌染料廢水的研究[D];華東理工大學(xué);2010年
4 肖冬雪;低分子量有機酸對鐵光化學(xué)循環(huán)的調(diào)控機制及其水處理應(yīng)用研究[D];東華大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張玉;微納米結(jié)構(gòu)鐵及鐵基復(fù)合物類芬頓降解有機物/滅菌性能研究[D];華中師范大學(xué);2015年
2 方嘉聲;針鐵礦—石墨烯復(fù)合體表面修飾介孔載體光芬頓催化劑的制備及其催化降解苯酚廢水的研究[D];北京化工大學(xué);2015年
3 彭博文;斯基芬頓成人培訓(xùn)模型探析[D];福建師范大學(xué);2015年
4 池俊杰;惠州市鴻海精細化工基地污水處理工藝的研究與設(shè)計[D];合肥工業(yè)大學(xué);2015年
5 李佳斌;土壤中石油烴的芬頓氧化實驗研究[D];輕工業(yè)環(huán)境保護研究所;2016年
6 劉春;鐵離子負載型電芬頓氧化降解雙酚A的研究[D];青島科技大學(xué);2016年
7 任麗梅;類鐵基復(fù)合氧化物催化芬頓氧化水中有機染料的研究[D];河北師范大學(xué);2016年
8 高爽;《赫芬頓郵報》科技創(chuàng)新文章翻譯報告[D];河北師范大學(xué);2016年
9 劉琳;《赫芬頓郵報》內(nèi)容生產(chǎn)研究[D];吉林大學(xué);2016年
10 薛柯柯;Fe_3O_4-SnO_2 復(fù)合材料的制備及其性能的研究[D];南昌航空大學(xué);2016年
,本文編號:2118870
本文鏈接:http://sikaile.net/kejilunwen/huaxue/2118870.html