鉑基納米結(jié)構(gòu)的控制制備及其電催化性能研究
本文選題:鉑基納米材料 + 熱分解; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:隨著化石燃料的快速消耗,由此而產(chǎn)生的環(huán)境問(wèn)題和能源危機(jī)日益嚴(yán)峻,人們正致力于綠色、清潔能源技術(shù)的開(kāi)發(fā)。電解水制氫和燃料電池因其各自的優(yōu)點(diǎn)被認(rèn)為是非常有潛力的新能源技術(shù)。鉑(Pt)因其優(yōu)異的電催化性能被廣泛地用作以上兩類反應(yīng)的催化劑。然而,其儲(chǔ)量較低、價(jià)格昂貴以及催化過(guò)程中的活性因中毒退化和穩(wěn)定性問(wèn)題一直成為制約Pt基催化劑發(fā)展的瓶頸所在。本論文從Pt基貴金屬單分散納米晶的可控生長(zhǎng)條件及納米晶成核、生長(zhǎng)熱力學(xué)和動(dòng)力學(xué)出發(fā),開(kāi)展單分散Pt基納米晶催化劑的合成方法及其控制制備研究,探討和分析其在電解水產(chǎn)氫和燃料電池陽(yáng)極反應(yīng)中的催化活性和穩(wěn)定性提高及機(jī)理等問(wèn)題。具體研究結(jié)果和創(chuàng)新點(diǎn)如下:1.發(fā)展了一種簡(jiǎn)單的寡鉑納米晶催化劑制備方法,利用熱解新型配位聚合物控制制備出高活性和高穩(wěn)定性的三維(3D)Pt/C復(fù)合電催化劑。具體利用溫和的溶劑熱方法,以氯鉑酸為鉑源和4-硝基苯酚為配體合成了由Pt(Ⅱ)有機(jī)配位聚合物和微小Pt納米顆粒組成的均勻球形前驅(qū)體。利用Ar/H2氣氛退火,將其轉(zhuǎn)化為3D Pt/C復(fù)合材料,退火后的材料尺寸相對(duì)于退火前減少了 30%。研究發(fā)現(xiàn),該復(fù)合材料是由直徑~4.5 nm單分散的Pt納米顆粒和均勻分布的氮摻雜多孔碳組成,其中氮含量為2.89 at%,主要為吡啶氮、吡咯氮、石墨氮和氧化的氮。為了研究氮摻雜多孔碳碳對(duì)電催化性能的影響,我們選擇商業(yè)化Pt黑催化劑作為對(duì)比,研究了所制備的3D Pt/C復(fù)合催化劑電催化乙二醇氧化反應(yīng)(EGOR)、甲醇氧化反應(yīng)(MOR)和乙醇氧化反應(yīng)(EOR)的催化活性和穩(wěn)定性。該設(shè)計(jì)策略有望進(jìn)一步拓展用于制備其他碳負(fù)載雙金屬/多金屬?gòu)?fù)合材料。2.發(fā)展了 NiPt納米線的制備方法。通過(guò)設(shè)計(jì)溫和的溶劑熱合成路線,成功制備出一維(1D)海參狀NiPt固溶相納米線,并且我們對(duì)納米線的自組裝機(jī)理進(jìn)行了深入探究。研究結(jié)果表明,乙二胺分子強(qiáng)烈地吸附在納米線的表面并增強(qiáng)一維納米結(jié)構(gòu)的各向異性生長(zhǎng),海參狀的合金納米線正是在溶液熱力學(xué)與晶體熱力學(xué)共同調(diào)控下,由大量顆粒狀亞單元在乙二胺分子的輔助作用下自組裝而形成。此外,此類催化劑是第一次被報(bào)道用于電催化析氧反應(yīng)(OER),且表現(xiàn)出良好的催化活性和穩(wěn)定性。對(duì)于典型的Ni、Pt原子比為23.6:1的NiPt催化劑而言,在較小的過(guò)電位0.396 V時(shí),電流密度即可達(dá)到10 mA/cm2、Tafel斜率為55 mV/decade,且顯示出良好的電化學(xué)催化穩(wěn)定性。研究表明,其電催化性能的提高歸因于貴金屬Pt摻雜導(dǎo)致的NiPt催化劑表面粗糙結(jié)構(gòu)的形成以及電荷轉(zhuǎn)移能力的增強(qiáng)。3.基于金屬之間氧化還原電位的差異,在熱液條件下,通過(guò)簡(jiǎn)便的電化學(xué)置換反應(yīng)控制制備出單分散CuPdPt固溶相納米晶體。研究表明,Cu和Pd均勻分布于CuPdPt納米晶中,而Pt主要分布于其外表面。由于Pt、Pd和Cu之間的協(xié)同效應(yīng),固溶相CuPdPt納米晶的穩(wěn)定性得到增強(qiáng),且單分散納米晶和載體之間的相互作用和電荷傳導(dǎo)也得到增強(qiáng),CuPdPt/C復(fù)合催化劑在電催化析氫反應(yīng)(HER)中,表現(xiàn)出優(yōu)異的電催化活性和穩(wěn)定性。在-0.1 V(相對(duì)于可逆氫電極)下,與商業(yè)化Pt/C(60 wt%Pt)催化劑相比,CuPdPt/C催化劑的質(zhì)量比活性提高了 701倍,其Tafel斜率為25 mV/decade,并且在經(jīng)過(guò)20000次循環(huán)后,催化活性幾乎不損失。更重要的是,復(fù)合催化劑中的Pt含量?jī)H為0.095 wt%。4.發(fā)展了一種簡(jiǎn)易制備Pt基固溶相雙金屬納米晶的普適方法。在OAm、ODE體系中,以相應(yīng)的乙酰丙酮類化合物為前驅(qū)源,實(shí)現(xiàn)了 Pt-M(M = Ru、Ni、Co、Cu、Zn、Mn)超細(xì)蠕蟲(chóng)狀納米線的制備。著重研究和探索直徑為~1.8nm的超細(xì)PtRu納米線的控制制備、形成機(jī)理和電催化性能。ICP表明,Pt、Ru的原子比為110.6:1,HRTEM圖像、HADDF-STEM圖像和元素面分布圖像顯示,Pt均勻的分布在一維蠕蟲(chóng)納米線中,而Ru零散地分布在于其中,該納米線表面含有大量的缺陷,如晶界、拐角、扭結(jié)等缺陷結(jié)構(gòu)。電化學(xué)結(jié)果表明,與商業(yè)化Pt/C(60 wt%Pt)催化劑相比,所制備的PtRu/C催化劑在電催化EGOR中,表現(xiàn)出更為優(yōu)異的催化活性和穩(wěn)定性。超細(xì)蠕蟲(chóng)狀納米線獨(dú)特的表面結(jié)構(gòu)、雙金屬電子結(jié)構(gòu)的修飾、活性組分與Ketjen碳載體之間的強(qiáng)相互作用;而通過(guò)摻雜痕量的金屬Ru,可以有效消除催化劑表面吸附的CO類有毒中間體,釋放Ru鄰近Pt的活性位點(diǎn),提高所制備催化劑的抗CO毒化能力和穩(wěn)定性能。
[Abstract]:With the rapid consumption of fossil fuels, the resulting environmental and energy crises are becoming increasingly severe. People are working on the development of green and clean energy technologies. Electrolytic hydrogen production and fuel cells are considered to be very potential new energy technologies because of their respective advantages. Platinum (Pt) is widely used because of its excellent electrocatalytic performance. The catalysts of the above two types of reactions, however, are low in reserves, high in price, and in the degradation and stability of catalytic activity due to toxic degradation and stability. In this paper, the controlled growth conditions and nanocrystalline nucleation, growth thermodynamics and kinetics of the Pt based monodisperse nanocrystalline crystals are derived. The synthesis method and control preparation of monodisperse Pt nanomi crystal catalyst are carried out. The catalytic activity and stability improvement and mechanism in the electrolysis of aquatic hydrogen and fuel cell anode reaction are discussed and analyzed. The specific research results and innovation points are as follows: 1. a simple method of preparation of oligomeric platinum nanocrystalline catalyst is developed. A three dimensional (3D) Pt/C composite electrocatalyst with high activity and high stability was prepared by a new coordination polymer of pyrolysis. A homogeneous spherical precursor composed of Pt (II) organic coordination polymer and micro Pt nanoparticles was synthesized by a mild solvothermal method, using chlorosulplatic acid as the platinum source and 4- nitrophenol as ligands. The use of Ar/H2 The atmosphere is annealed and transformed into 3D Pt/C composite. The annealed material size is reduced by 30%. research before annealing. The composite is composed of Pt nanoparticles with a diameter of 4.5 nm and a homogeneous distribution of nitrogen doped porous carbon. The nitrogen content is 2.89 at%, mainly pyridine nitrogen, pyrrole nitrogen, graphite nitrogen and oxidation. In order to study the effect of nitrogen doped porous carbon and carbon on the electrocatalytic performance, we chose commercialized Pt black catalyst as a contrast to study the catalytic activity and stability of the prepared 3D Pt/C composite catalyst for electrocatalytic ethylene glycol oxidation (EGOR), methanol oxidation (MOR) and ethanol oxidation (EOR). This design strategy is expected to advance. The preparation of NiPt nanowires was developed for the preparation of other carbon loaded bimetallic / polymetallic composite materials.2.. By designing a mild solvent thermal bonding route, one dimensional (1D) sea cucumber NiPt solid solution nanowires were prepared successfully. And we explored the self-assembly mechanism of the nanowires. The results show that B two Amine molecules strongly adsorb on the surface of the nanowires and enhance the anisotropic growth of the one-dimensional nanostructures. The sea cucumber nanowires are formed by the assembly of a large number of granular subunits under the auxiliary action of ethylenediamine molecules under the co regulation of solution thermodynamics and crystal thermodynamics. In addition, the catalyst is the first time to be used. The report is used for the electrocatalytic oxygen evolution reaction (OER) with good catalytic activity and stability. For the typical Ni, the Pt atom is compared to the NiPt catalyst of 23.6:1, when the smaller overpotential is 0.396 V, the current density can reach 10 mA/cm2 and the Tafel slope is 55 mV/decade, and the good electrochemical catalytic stability is shown. The study shows that The improvement of the electrocatalytic properties is attributed to the formation of the surface roughness structure of the NiPt catalyst resulting from the Pt doping of precious metals and the enhancement of the charge transfer capacity of.3. based on the difference of the redox potential between metals. In the hydrothermal condition, the monodisperse CuPdPt solid solution nanocrystals were prepared by a simple electrochemical replacement reaction. It is shown that Cu and Pd are distributed uniformly in the CuPdPt nanocrystals, while Pt is mainly distributed on the outer surface. The stability of the solid solution CuPdPt nanocrystals is enhanced due to the synergistic effect of Pt, Pd and Cu, and the interaction between the monodisperse nanocrystalline and the carrier and the charge conduction are also enhanced, and the CuPdPt/C composite catalyst is in the electrocatalytic hydrogen evolution reaction (H). ER) showed excellent electrocatalytic activity and stability. Under -0.1 V (relative to reversible hydrogen electrode), the mass of CuPdPt/C catalyst was 701 times higher than that of commercial Pt/C (60 wt%Pt) catalyst, and its Tafel slope was 25 mV/decade, and the catalytic activity was almost no loss after 20000 cycles. The Pt content in the catalyst is only 0.095 wt%.4. to develop a simple method for the preparation of Pt based solid solution bimetallic nanocrystals. In the OAm, ODE system, the preparation of Pt-M (M = Ru, Ni, Co, Cu, Zn, and Zn) is prepared by using the corresponding acetacetone as the precursor, and the diameter is studied and explored. The preparation, formation mechanism and Electrocatalytic Performance.ICP of ultrafine PtRu nanowires show that the atomic ratio of Pt and Ru is 110.6:1, HRTEM images, HADDF-STEM images and element distribution images, and Pt is distributed uniformly in one-dimensional worm nanowires, and Ru scattered in the nanowires. The surface of the nanowire contains a large number of defects, such as grain boundary and corner, The electrochemical results show that, compared with the commercialized Pt/C (60 wt%Pt) catalysts, the prepared PtRu/C catalysts exhibit more excellent catalytic activity and stability in the electrocatalytic EGOR. The unique surface structure of the superfine vermicular nanowires, the modification of the bimetallic electronic structure, the active components and the Ketjen carbon carrier. Strong interaction can be achieved by doping trace metal Ru, which can effectively eliminate the CO toxic intermediate adsorbed on the surface of the catalyst, release the active site of Ru adjacent to Pt, and improve the CO toxicity and stability of the catalyst.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O643.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁鎮(zhèn)海,王森,孫彥平,許文林;Ti/SnO_2+RuO_2+MnO_x/MnO_x陽(yáng)極的電催化性能[J];精細(xì)石油化工;1996年02期
2 劉雪華;唐電;;含硅鈦陽(yáng)極的制備及其電催化性能研究[J];材料保護(hù);2007年09期
3 王紅森,吳仲達(dá),林文廉,丁曉紀(jì);鈦基體中離子注入鈀的電催化性能[J];化學(xué)學(xué)報(bào);1994年11期
4 黃映恒;侯蕾;童張法;韋藤幼;;玻碳基Pt/C/NH_4NiPO_4復(fù)合電極電催化性能[J];科技導(dǎo)報(bào);2013年31期
5 張建民;陳衛(wèi)華;石秋芝;;電極材料的組成設(shè)計(jì)與電催化性能——介紹一個(gè)研究性實(shí)驗(yàn)[J];大學(xué)化學(xué);2011年01期
6 林紀(jì)筠,趙孟科,陳康寧;含鑭復(fù)合氧化物的合成及其電催化性能[J];中國(guó)稀土學(xué)報(bào);1999年01期
7 趙紅曉;王豪杰;何寶明;姜子龍;劉奇;;Pt-NiO/C復(fù)合材料的制備及對(duì)乙醇的電催化性能[J];貴金屬;2013年03期
8 杜艷芳,陳黎明,亓西敏,陸嘉星,何鳴元;納米TiO_2膜電極的制備及其電催化性能[J];化學(xué)世界;2004年01期
9 袁珍;鄧湘云;李建保;;NiCo_2O_4/Ni復(fù)合電極的制備及電催化性能研究[J];化學(xué)工程師;2011年04期
10 張晶;趙曉;劉長(zhǎng)鵬;邢巍;;Pd/PVP-MWCNTs電極對(duì)甲酸氧化的電催化性能[J];電化學(xué);2012年03期
相關(guān)會(huì)議論文 前10條
1 張建民;石秋芝;;氫析出電催化劑及其電催化性能[A];第八屆全國(guó)大學(xué)化學(xué)教學(xué)研討會(huì)論文集[C];2005年
2 魏杰;許凱冬;王芳;楊玉光;張忠林;;雜多酸修飾多晶鉑電極的電催化性能的研究[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年
3 白正宇;胡傳剛;徐鵬樂(lè);楊林;;不同結(jié)構(gòu)添加劑對(duì)鈀納米晶的形成及電催化性能的影響[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2012年
4 袁定勝;陳俊智;劉應(yīng)亮;;掃描電位沉積Bi-Pt合金及其電催化性能的研究[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(下集)[C];2005年
5 楊文;楊成;楊帆;楊秀榮;;鉑納米花的綠色合成以及電催化性能的研究[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)納米化學(xué)分會(huì)場(chǎng)論文集[C];2008年
6 劉小兵;成旦紅;徐偉一;郁祖湛;;Ni-P-WC復(fù)合電極析氫電催化性能的研究Ⅱ一表面形貌、晶體結(jié)構(gòu)與穩(wěn)定性研究[A];2004年全國(guó)電子電鍍學(xué)術(shù)研討會(huì)論文集[C];2004年
7 董博;王威;王策;李振宇;;高分子膜的厚度以及親疏水性質(zhì)對(duì)電催化性能的影響[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
8 王新;唐亞文;陸天虹;;單壁納米碳管載Pd催化劑的制備及其對(duì)甲酸氧化的電催化性能[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)新能源與能源化學(xué)分會(huì)場(chǎng)論文集[C];2008年
9 葛性波;丁軼;;鉑修飾的納米多孔金薄膜的結(jié)構(gòu)調(diào)控及其對(duì)電催化性能的影響[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)新能源與能源化學(xué)分會(huì)場(chǎng)論文集[C];2008年
10 王先友;黃偉國(guó);汪形艷;李俊;王希敏;;LaNiO_3摻雜復(fù)合氧化物的制備及對(duì)氧的電催化性能研究[A];第一屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(下)[C];2004年
相關(guān)博士學(xué)位論文 前7條
1 王雪芹;納米TiO_2基催化劑的制備及光電催化性能研究[D];哈爾濱工業(yè)大學(xué);2015年
2 孫斌;新型取代卟啉配合物的合成及電催化性能研究[D];江蘇大學(xué);2016年
3 丁韜;鉑基納米結(jié)構(gòu)的控制制備及其電催化性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
4 周敏;鉍氧基化合物納米陣列的合成及其光電催化性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年
5 趙杰;直接甲醇燃料電池陽(yáng)極催化劑的合成、表征及其電催化性能研究[D];浙江大學(xué);2007年
6 李美超;導(dǎo)電聚合物的制備及其電催化性能研究[D];浙江工業(yè)大學(xué);2006年
7 潘路;鐵鈷鎳納米氧化物復(fù)合氧化物的制備及其光電催化性能[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 劉瑞琴;微波法制備PdBi、PdNi/石墨烯及其電催化性能研究[D];山西大學(xué);2014年
2 汪伍洋;聚吡咯修飾鉑電極的制備及其電催化性能研究[D];浙江工業(yè)大學(xué);2011年
3 張戀;Pt-M(M=Co、Ni、Cu)/GN-CD復(fù)合物的制備及其對(duì)甲醇氧化的電催化性能[D];福建師范大學(xué);2014年
4 羅春平;Pt、Pd/石墨烯復(fù)合材料制備及其電催化性能研究[D];南京理工大學(xué);2016年
5 羅瓊;Ni基納米材料的制備及其電催化性能研究[D];華南理工大學(xué);2016年
6 韓娜;金/金屬氧化物復(fù)合材料的制備及其氧析出電催化性能研究[D];揚(yáng)州大學(xué);2016年
7 張俊濤;金屬磷化物的合成及電催化性能的研究[D];北京化工大學(xué);2016年
8 李偉;碳負(fù)載鈀或鈀基納米復(fù)合物的制備及電催化性能研究[D];吉林建筑大學(xué);2017年
9 陳麗;過(guò)渡金屬(鎳、鈷)氫氧化物的制備及其電催化性能研究[D];北京化工大學(xué);2012年
10 劉云青;納米多孔Pd合金的制備及其電催化性能研究[D];濟(jì)南大學(xué);2013年
,本文編號(hào):1940519
本文鏈接:http://sikaile.net/kejilunwen/huaxue/1940519.html